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Abstract 

Leveraging AI for synthesizing the deluge of biomedical knowledge has great potential for pharmacological discovery 
with applications including developing new therapeutics for untreated diseases and repurposing drugs as emergent 
pandemic treatments. Creating knowledge graph representations of interacting drugs, diseases, genes, and proteins 
enables discovery via embedding-based ML approaches and link prediction. Previously, it has been shown that these 
predictive methods are susceptible to biases from network structure, namely that they are driven not by discover-
ing nuanced biological understanding of mechanisms, but based on high-degree hub nodes. In this work, we study 
the confounding effect of network topology on biological relation semantics by creating an experimental pipeline 
of knowledge graph semantic and topological perturbations. We show that the drop in drug repurposing perfor-
mance from ablating meaningful semantics increases by 21% and 38% when mitigating topological bias in two 
networks. We demonstrate that new methods for representing knowledge and inferring new knowledge must be 
developed for making use of biomedical semantics for pharmacological innovation, and we suggest fruitful avenues 
for their development.
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Introduction
Artificial intelligence holds great promise for discov-
ery and innovation in pharmacology from identifying 
new drug targets to predicting new applications for old 
drugs, or drug repurposing. Underpinning these innova-
tions is an understanding of normal human biology and 
of the pharmacodynamics–how a drug affects the body–
and pharmacokinetics–how the body processes a drug–
of drug response. Critically important are interactions 

between several biological entities, namely drugs, dis-
eases, proteins, and genes.

Knowledge of these interactions can be represented 
well as a knowledge graph (KG), a simple and flexible 
network data structure. KGs facilitate computation and 
are amenable to network methods for addressing com-
plex questions like how to repurpose a drug for a novel 
condition by framing the task as predicting new links in 
the graph [1, 2].

Gold-standard databases that would comprise pharma-
cological interactions between drugs, diseases, genes, and 
proteins are manually curated [3]. While these benefit 
from human quality assurance, they suffer from limited 
coverage due to the limited capacity of manual curators 
and the rapid proliferation of biomedical literature.

Advances in natural language processing present an 
opportunity to increase the coverage and scope of these 
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KGs by automatically extracting relations between rel-
evant entities from scientific text. Already multiple such 
global knowledge graphs have been created from bio-
medical literature at the scale of PubMed [4, 5].

Equipped with large-scale KGs, machine learning 
methods can be leveraged for pharmacological discovery. 
The primary class of methods, known as KG embedding 
methods, learns numerical representations of entities and 
relations in a KG to automatically infer new links implied 
by existing knowledge [6]. These inference methods have 
been applied to tasks including KG completion, ques-
tion answering, and logic prediction generation [6, 7]. In 
drug discovery, these methods are poised to predict drug 
repurposing opportunities [2], disease-gene associations 
[8, 9] and drug-target interactions [10].

Extracting knowledge directly from text has the ben-
efit of capturing the rich semantics of the relationship 
between entities, which represents biological nuance. 
However, systems for relation extraction are imperfect 
and suffer from noise, missed key syntactic clues such as 
negation, and challenges in discerning relevant knowl-
edge to extract [11–14]. Further complicating automated 
knowledge-based systems for pharmacological discovery, 
it has been shown that knowledge embedding methods, 
the primary class of knowledge inference methods, suffer 
from network topology-based biases, where the presence 
of highly connected, or “hubby”, nodes inflates evaluation 
metrics of inference quality [15]. These features of global 
KGs must be carefully considered in understanding the 
quality and caveats of discovery driven by large knowl-
edge systems.

In this work we provide the first analysis of the inter-
relation between relation semantics and topology. We 
aimed to assess the capacity of knowledge embedding 
models to leverage knowledge graph semantics for phar-
macological inference. We demonstrate that in the pres-
ence of network topologies with highly variable node 
degrees and wherein a small subset of nodes are highly 
connected hubs, the benefit of nuanced semantics is 
diluted, suggesting that new methods must be devised 
that make use of this important biological information 
with equal potency as the network structure itself.

Related work
Recent work in knowledge inference has shown that 
computational successes are very sensitive to experi-
mental conditions. In a comparison of commonly used 
embedding methods, Berrendorf et al demonstrated that 
results were sensitive to the chosen model architecture, 
the training approach, the loss function, and certain data 
assumptions [16]. Another study showed that these fac-
tors and others including model parameter initialization 
and different splits of the datasets have great impacts on 

results for applications using drug discovery-oriented 
knowledge graphs, demonstrating the pertinence of these 
considerations in the biomedical domain [17].

In parallel, the topic of knowledge graph quality assess-
ment is well studied in the field of semantic technology. 
Zaveri et  al. provide an overview of quality assessment 
for linked data, describing many commonly used met-
rics such as accuracy, timeliness, completeness, rel-
evancy, consistency, availability, and verifiability [18, 
19]. The notion of consistency is particularly pertinent, 
which concerns the absence of logical contradictions in 
the knowledge graph [20]. SemMedDB, for instance, is 
a global literature-scale knowledge graph that has been 
demonstrated to have over 500,000 inconsistent triples 
[21]. It has even been shown that when quality checks 
are evaluated for large benchmarking knowledge graphs, 
consistency, completeness, and accuracy can vary widely 
[22]. Lowering the quality of knowledge in KGs via 
increasing the levels of incompleteness or noise have 
been shown to lead to large degradations in performance 
for KG completion [23].

Work is emerging linking network topology as a con-
founding factor for knowledge inference methods. Zietz 
et al showed that a competitive baseline for inferring link 
prediction, which they call an “edge prior”, can be con-
structed using node degree alone [24]. The authors show 
that using edge priors for link prediction performs well 
on biomedical prediction tasks including drug-disease 
prediction, disease-gene association, and drug-target 
binding. Another work by Bonner et  al reinforces this 
finding by showing that knowledge graph embedding 
methods for biomedical link prediction also favor high-
degree nodes yielding performance metrics that appear 
inflated [15]. This observation was consistent across a 
variety of inference tasks and embedding methods.

Materials and methods
We study the relationship between knowledge graph rela-
tion quality and network topology by conducting pre-
processing perturbations of the KG before inference time 
and analyzing the downstream effect on performance. 
This framework elucidates the relative importance that 
the model places on relational knowledge versus relying 
primarily on topology. We measure this effect by evalu-
ating the drop in performance when corrupting relations 
under different network topologies. We provide a sche-
matic illustrating the graph perturbation pipeline and 
subsequent evaluation for a downstream pharmacologi-
cal task in Fig. 1.

Data
We define a knowledge graph, T  , as a collection of triples 
of the form, (h, r, t) ∈ T ⊆ E ×R× E , where h, t ∈ E 
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are entities (or equivalently, nodes) and r ∈ R are rela-
tions (or equivalently, edges). Two knowledge graphs 
were used in this study: GNBR [4], which is NLP-derived, 
and Hetionet [25], which is derived from structured 
databases.

GNBR
The Global Network of Biomedical Relations (GNBR) is a 
knowledge graph of relationships between drugs, genes, 
proteins, and diseases extracted from PubMed abstracts 
[4]. Sentences containing co-occurring pairs of drugs, 
genes, proteins, and diseases identified via named entity 
recognition (NER) were clustered together based on 
dependency parsing and co-occurrence frequency. Com-
mon dependency paths were assigned one of 32 high-
level semantic themes by annotators, which defined 32 
relations.

Hetionet
Hetionet is a biomedical knowledge graph comprised of 
structured databases from 29 sources [25]. The full KG 
contains 11 types of nodes and 24 types of edges describ-
ing interactions between genes, compounds, diseases, 

side effects, symptoms, pathways, and other entity types. 
We restricted the graph to chemicals, genes, proteins, 
and diseases to enforce comparable mechanistic-based 
knowledge to drive repurposing inference. Data for 
GNBR and Hetionet were downloaded from the com-
piled Drug Repurposing Knowledge Graph (DRKG) net-
work [26]. In both KGs, genes and proteins are treated as 
a single entity type and not disambiguated as is standard 
in the field. Network statistics for GNBR and the Hetio-
net subset used in this work are described in Table 1.

KG pre‑processing perturbations
We evaluated the effect of four knowledge graph pertur-
bation strategies, two changing the topology of the graph 
and two ablating the semantics of KG relations.

Topology perturbation via degree‑based downsampling
Knowledge graph topology was perturbed by downsam-
pling entities or triples based on degree before embed-
ding and evaluation. We define the degree of a node in 
the knowledge graph as the sum of the in- and out-edges 
adjacent to the node:

Fig. 1  Overview of the KG processing and evaluation pipeline. Input KGs are first pre-processed by altering their topology via degree-based 
downsampling or hub removal. The semantics of KG relations are experimentally perturbed via corruption or flattening down to a single edge 
type for non-whitelist triples. After pre-processing, the KG is used for downstream tasks by predicting links using KG embedding methods. The 
performance under different experimental conditions is evaluated

Table 1  Knowledge graph statistics. Med. ND = median node degree. Max ND = maximum node degree. EE = entity entropy (see 
“Metrics” section)

Dataset |T | |E | |R| Med. ND Max ND EE

GNBR 321K 44K 32 3 8.2K 8.95

Hetionet 555K 20K 11 17 8.8K 8.89
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In the entity downsampling condition, a fraction, fhubs , 
of entities with degree above the pth percentile, degp , 
were removed uniformly at random.

In triple-based downsampling, triples were removed 
from the graph based on degree until a fraction of the ini-
tial triples, d remained. We define the degree of a triple, 
e, as the sum of the degrees of its two entities:

To account for the correlation of triples’ degrees, 
whereby removal of one triple might effect the degree of 
another, downsampling was done iteratively in batches 
using Algorithm 1 where

Algorithm  1 Degree-based KG triple downsampling 
protocol

and

The degree strength parameter, α , informs how degree 
is used for downsampling, as the magnitude of α controls 
the strength of the degree-based selection and the sign 
controls whether high-degree triples (positive α values) 
or low-degree triples (negative α values) have greater 
probability mass for downsampling.

Relation perturbation experiments
Two pre-processing procedures were employed to ablate 
biologically meaningful semantics of triples in the input 
knowledge graphs: flattening and corrupting. In the cor-
rupting condition, a fraction of non-whitelist triples, 

deg(i) := |{(h, r, t) | h = i ∨ t = i}|

deg(e) = deg((h, r, t)) := deg(h)+ deg(t).

u∗(e) := (1+ deg(e))α

p∗(e) := u∗(e)/

e∈T

u∗(e).

fcorrupt , were corrupted, where corrupting is defined 
as resampling the triple’s relation to another relation, 
r′ ∈ R , uniformly at random. The flattening procedure 
is analogous: the relations of a fraction, fflat , of non-
whitelist triples, were mapped to a single arbitrary rela-
tion, “relates”.

Models
Knowledge inference models
In this study we considered four knowledge graph 
embedding models for knowledge inference, TransE [27], 
DistMult [28], ComplEx [29], and RotatE [30]. These 
models map concepts and relations to discrete numerical 
embeddings in vector space such that knowledge graph 
triples have a meaningful geometric interpretation in the 
learned space. This representation enables downstream 

tasks including knowledge inference by measuring the 
plausibility of inferred triples, those not seen in training. 
In this work, embeddings are used for our knowledge 
reconstruction task where we infer known but obscured 
whitelist relationships.

In TransE, entities and relations are mapped to 
k-dimensional vectors vectors such that triples, (h, r, t), in 
the KG can be represented as translations from h to t via 
r , where h, r, t ∈ R

k . The TransE score function is:

The notion of learning embeddings to optimize for 
translation is conceptually simple but fails to capture 
properties that may be intrinsically semantically impor-
tant like symmetry.

DistMult [28] learns embeddings using a semantic 
matching approach, optimizing for embeddings of head, 
relation, and tail nodes in KG triples to point in the same 

f (h, r, t) = −||h + r − t||2
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direction in the real plane. The scoring function for Dist-
Mult is:

where h, r, t ∈ R
k .

ComplEx [29] uses a semantic approach like DistMult, 
but in the complex plane, h, r, t ∈ C

k:

Finally, RotatE [30] learns embeddings such that the 
relation embedding represents a rotation of the head vec-
tor to the tail vector in the complex plane, h, r, t ∈ C

k:

where ◦ denotes the Hadamard product. This model has 
been shown to be the most expressive of the four meth-
ods with the ability to capture symmetric, antisymmetric, 
inversion, and composition properties in relations. We 
focused our investigation on TransE, the model with the 
simplest geometric interpretation, and RotatE, the model 
that is the most expressive and consistently outperforms 
the other three on KG prediction tasks [30].

Implementation details
Model training and evaluation was done using the 
PyKEEN package [31]. Hyperparameter values were set 
based on existing work on hyperparameter tuning of KG 
embeddings for biomedical link prediction, particularly 
for Hetionet [17]. Models were trained for 500 epochs 
with learning rate = 0.02, and 50 negative samples gen-
erated per positive. The PyKEEN default embedding 
dimensions were used: k = 50 for TransE and DistMult, 
k = 200 for ComplEx and RotatE. In all experiments, 
we used the negative sampling loss with self-adversarial 
training [30] with AdaGrad [32] for optimization.

Evaluation
Performance was evaluated on a held-out test set using 
a typical KG embedding evaluation framework based on 
concealing and inferring head and tail nodes in test tri-
ples [31].

f (h, r, t) = h
Tdiag(r)t,

f (h, r, t) = Re(hTdiag(r)t).

f (h, r, t) = ||h ◦ r − t||22,

Pharmacological evaluation tasks
We evaluate three different biomedical knowledge infer-
ence tasks: drug-disease prediction (drug repurposing), 
disease-gene association, and drug-target (equivalently 
“drug-gene”) interaction. For each task, a set of rela-
tions from each dataset are considered whitelist relations 
which are candidates for test set sampling. Whitelist rela-
tions are listed in Table  2. These comprise the standard 
set of whitelist relations for various pharmacological 
knowledge inference tasks [15].

Test set sampling
To split triples into training and test sets, candidate test 
triples were first determined after all network pre-pro-
cessing. For a given task, a triple, (h,  r,  t), is eligible for 
inclusion in the test set if it satisfies two criteria: a) the 
triple’s relation, r, is in the whitelist set of relations for the 
task, and b) min(deg(h), deg(t)) ≥ 4 . We sampled 5% of 
permissible triples to create a test set. All other triples, 
including those consisting of a whitelist relation, com-
prised the training set.

Metrics
As in [23], we calculated entity entropy (EE) as a global 
metric of network topology. The intuition for this metric 
is that hubbier networks will have lower EE and networks 
where each node has approximately the same degree will 
have high EE. EE is calculated as:

where PESP is the entity selection probability distribution, 
which describes the probability that an entity appears in 
a triple sampled uniformly from T  . PESP is calculated as:

Lastly, we define normalized entity entropy, EEnorm , as 
EEnorm(T ) :=

EE(T )
log(|E|) such that 

EEnorm : E ×R× E → [0, 1].
Knowledge inference performance was evaluated 

using adjusted mean rank index (AMRI) scores as in 
[16]. AMRI is a metric that considers the expectation of 

EE(T ) =
∑

n∈E

−PESP(n) log PESP(n),

PESP(n) :=
|{(h, r, t) | h = n ∨ t = n}|

2|T |
.

Table 2  Task-specific whitelist relations

Dataset Drug-Disease Drug-Gene Disease-Gene

GNBR Treats (T) Binds (B) Causal Mutations (U), Role in Pathogenesis (J), Mutations Affect Dis-
ease Course (Ud), Polymorphisms Alter Risk (Y), Promotes Progression 
(G)

Hetionet Treats (CtD) Binds (CbG) Associates (DaG)
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where entities would rank under a random uniform dis-
tribution, which is a more faithful representation of the 
quality of embedding-based predictions. AMRI scores lie 
in the range [−1, 1] where a value of 1 indicates perfect 
performance (i.e. the obscured entity is always ranked at 
the top of the predicted list) and 0 indicates random-like 
predictions.

Results
Main results
Drug-disease prediction for GNBR performance dropped 
by 16% and 2% under relation corruption for the input 
KG ( d = 1.0 ) using TransE and RotatE. The performance 
drop increased to 30% and 22% upon downsampling to 
a quarter of triples ( d = 0.25 ), favoring high-degree tri-
ples for downsampling ( α = 2 ). The pattern recurred 
for Hetionet, with performance dropping by 34% and 
23% under relation corruption for TransE and RotatE 
without downsampling the KG, and by 75% and 60% 

downsampling to d = 0.25 . In both cases, decreasing val-
ues of d led to more dramatic drops in performance from 
corrupting relations. Decreasing values of d did not dras-
tically or consistently affect the performance of the KG 
without relation perturbation (control condition). Drops 
in performance of the model under relation flattening 
were largely insensitive to the varying levels of downsam-
pling (Fig. 2).

Sensitivity to degree‑based downsampling
The α parameter was altered to preferentially downsam-
ple low-degree triples ( α = −2 ) or downsample triples 
uniformly at random ( α = 0) . In GNBR, at α = −2 , the 
corruption performance drop increases from 15% with-
out downsampling to 8% at d = 0.25 for TransE and from 
2% to 6% at d = 0.25 for RotatE. At α = 0 , the corruption 
drop in performance was relatively constant for TransE 
at different downsample levels and only increases from 
2% to 7% in the case of RotatE. Note, the range of entity 

Fig. 2  AMRI evaluation of drug-disease inference for two knowledge graphs (GNBR and Hetionet) and two KG embedding inference methods 
(TransE and RotatE). Results are reported for varying entity entropy conditions induced by downsampling high-degree triples ( α = 2) . Relation 
semantics were perturbed by two procedures: corrupting, or shuffling relations randomly, and flattening, or mapping all non-whitelist relations 
to a single arbitrary relation
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entropy values at corresponding levels of downsampling 
is smaller as would be expected under degree-agnostic 
downsampling (Fig. S1).

In the case of Hetionet, performance drop trends are 
largely agnostic of the downsampling low-degree triples 
or downsampling uniformly. At α = −2 , using TransE the 
performance drop under relation corruption is 32% with-
out downsampling, but interestingly a large performance 
gain is seen at d = 0.25 . With RotatE the performance 
drop decreases from 22% to 18% at d = 0.25 . Under uni-
form downsampling, the corruption performance drop 
only increases from 30% (d = 1) to 39% (d = 0.25) with 
TransE and from 23% to 28% with RotatE, again noting 
that the changes in entity entropy are small (Fig. S2).

Tasks beyond drug repurposing
We evaluated the reproducibility of the corruption-topol-
ogy effect from the drug-disease task to two other tasks: 
drug-gene association and drug-target binding under 
high-degree triple downsampling ( α = 2 ). For drug-tar-
get binding, the performance drop increases from 16% 
(d = 1) to 51% (d = 0.25) for TransE and from 4% to 48% 
for RotatE in GNBR. Similarly, the performance drop 
increases from 34% (d = 1) to 70% (d = 0.25) in TransE 
and from 18% to 38% in RotatE (Fig. S3).

For the disease-gene association task, in GNBR, the 
performance drop increases from 18% (d = 1) to 55% 
(d = 0.25) for TransE and from 2% to 31% for RotatE. 
With Hetionet, the performance drop increases from 
32% (d = 1) to 71% (d = 0.25) using TransE and from 7% 
to 38% using RotatE (Fig. S4).

Additional knowledge inference models
We compared the effect of downsampling high-degree 
triples ( α = 2 ) for two other models, DistMult and Com-
plEx, as well. When using DistMult for inference, cor-
rupting led to a 5% drop in performance for GNBR and 
30% drop for Hetionet without downsampling. With 
downsampling at d = 0.25 , performance dropped by 84% 
and 67% for GNBR and Hetionet, respectively.

For ComplEx, corrupting led to a 4% drop for GNBR 
and a 35% drop for Hetionet without downsampling tri-
ples. At d = 0.5 performance under corruption dropped 
by 22% and only 4% at d = 0.25 for GNBR, noting that 
performance of the uncorrupted network declines at 
increasing levels of sparsity. For Hetionet, at increas-
ing levels of sparsity, the uncorrupted performance stays 
high, but the drop from corruption increases from 35% at 
d = 1 to 83% at d = 0.5 and 87% at d = 0.25 (Fig. S5).

Comparison against removing hubs
We compared the procedure for increasing the entity 
entropy via triple downsampling against removing 

hub nodes, setting fhub = 1 in all conditions. Using 
GNBR and Hetionet with TransE and RotatE for drug-
disease prediction, the corruption performance drop 
was approximately the same for the input KGs without 
removing hubs (p = 1) and with removing hubs of degree 
above the 99th percentile (p = 0.99) . When downsam-
pling at p = 0.9 , corruption performance increased from 
17% to 45% for GNBR using TransE and from 3% to 55% 
for GNBR using RotatE. For Hetionet, corruption per-
formance increased from 38% at p = 1 to 59% at p = 0.9 
using TransE and from 24% to 38% using RotatE (Fig. S6).

Discussion
Inferring new knowledge implied from existing scientific 
findings is a powerful paradigm for discovery, particu-
larly in pharmacological tasks. However, it is important 
to carefully consider biases present in the underlying data 
and models that drive inference. Models for knowledge 
inference have been shown to be susceptible to topology 
biases were model performance is driven primarily by 
predictions concerning hubby nodes.

In this work, we interrogated knowledge graph topol-
ogy as a confounding factor for making use of relation 
semantics, which represent biologically meaningful 
interactions. We established a framework of ablating 
biological semantics by corrupting the relations in KG 
triples and investigated the effect on model performance 
under different network topologies. We found that the 
greatest drop in performance due to relation corruption 
arose in settings with higher entity entropy, where there 
are relatively fewer hubby nodes dominating model per-
formance. This suggests that in higher entity entropy 
circumstances, the model must rely on the relations 
between entities rather than on node degree alone.

We observed that these results were consistent in a 
variety of settings. We primarily focused on the drug 
repurposing task but observed similar trends in drug-tar-
get prediction and disease-gene association. These find-
ings were reflected in TransE and RotatE, our primary 
knowledge inference models of investigation, but also 
in ComplEx and DistMult representing a variety of geo-
metric interpretations for knowledge graph embedding. 
Additionally, we observed this increase in corruption 
performance drop when simply removing a fraction of 
nodes with the greatest degree rather than downsampling 
high-degree triples. As controls, we saw that the magni-
tude of effect was much diminished when downsampling 
triples uniformly randomly or when preferentially down-
sampling low-degree triples.

In comparing embedding models for inference, we 
note interesting behaviors. Performance was consistently 
higher for RotatE than for TransE, which reflects that 
RotatE is more expressive as it can model the symmetry 
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property for relations, and there are multiple symmetric 
biomedical relations in our graphs including “binds” and 
“associates”. This may also account for aberrant behav-
ior such as why performance increases in the Hetionet 
control condition at increasing levels of sparsity, which 
results in a less constrained optimization problem. Fur-
ther, the pronounced drop in performance when corrupt-
ing relations at increasing levels of sparsity for RotatE 
suggests the models’ improved capacity to find geometric 
mappings of semantics without introducing noise.

There are multiple implications of this work. First, we 
reaffirmed the prevailing notion that embedding based 
approaches for knowledge graph inference rely heavily 
on network topology and the effect of ablating semantics 
can be seen once the confounding of network topology 
is mitigated. Second, methods must be developed that 
properly consider edge semantics to enable true logic-like 
inference leveraging biological principles found in rela-
tions (e.g. [33]). Without this, methods are vulnerable to 
over-optimizing on network structure, which could rep-
resent an artifact of noise and data biases, such as which 
domains have received the most funding and thus the 
most has become known through scientific investiga-
tion. Third, the development of methods to mitigate the 
dominance of network topology for knowledge inference 
are prudent. Such methods could include pre-filtering 
knowledge based on relevant biological context or rela-
tion confidence, re-weighting knowledge to enable equal 
contributions to learning across different biological sub-
domains, implementing a Bernoulli sampler for gen-
erating negative triples according to node degree, and 
selectively prioritizing knowledge in optimization to lead 
to non-redundant, non-obvious discoveries [14].

This work has limitations as well. We limit the scope 
of our investigation to two global knowledge graphs, one 
derived from structured databases and one from unstruc-
tured text. As methods for relation extraction continue 
to improve [12, 34], our KGs will become higher fidel-
ity representations of known biology from scientific 
research, thus these observations will be less affected by 
noise incurred in NLP pipelines. We also are only able 
to control entity entropy via a downsampling procedure, 
thus our observations also reflect a loss of knowledge 
affecting performance.

Future research directions will benefit from method 
development that prioritizes relation semantics with 
at least equal weight as network topology for capturing 
structure and driving logic-based inference for knowl-
edge discovery. GNN methods [35] are well-suited to 
capture network structure in conjunction with entity 
and relation features to learn a more holistic picture of 
knowledge. Additionally, methods for semantic inter-
pretability will help shed light on the degree to which 

relations impact inference and can help surface patterns 
of logic that inform the model (e.g. [36]). GPT-based 
chain-of-reasoning [37] work also presents a promising 
avenue of exploration for making semantic contributions 
to inference explicit.

Conclusions
In this work we probed the interrelation between knowl-
edge graph relational semantics and network topology as 
a confounding factor for knowledge graph inference. We 
created a framework for perturbing KG topology and KG 
semantics for two global, biomedical KGs, one derived 
from text via an NLP pipeline and one from structured 
data sources. We demonstrated that the drop in RotatE 
performance from corrupting relations increases from a 
2% drop in GNBR and a 23% drop in Hetionet to a 22% 
and 60% drop, respectively, when downsampling highly 
connected triples. We showed that these results are 
agnostic to several embedding methods and multiple 
inference tasks yet specific to downsampling high-degree 
triples and not to downsampling low-degree triples or 
downsampling uniformly. This work motivates the need 
for further research into knowledge representation strat-
egies that mitigate biases in highly hubby network topol-
ogies, optimization strategies that upweight low-degree 
yet important knowledge, and methods that emulate 
logic-based reasoning rather than relying on structure 
alone for driving KG inference. Code and analyses are 
provided as a Python package1.
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