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Abstract 

Background Systematic reviews of Randomized Controlled Trials (RCTs) are an important part of the evidence-based 
medicine paradigm. However, the creation of such systematic reviews by clinical experts is costly as well as time-
consuming, and results can get quickly outdated after publication. Most RCTs are structured based on the Patient, 
Intervention, Comparison, Outcomes (PICO) framework and there exist many approaches which aim to extract PICO 
elements automatically. The automatic extraction of PICO information from RCTs has the potential to significantly 
speed up the creation process of systematic reviews and this way also benefit the field of evidence-based medicine.

Results Previous work has addressed the extraction of PICO elements as the task of identifying relevant text spans 
or sentences, but without populating a structured representation of a trial. In contrast, in this work, we treat PICO 
elements as structured templates with slots to do justice to the complex nature of the information they represent. 
We present two different approaches to extract this structured information from the abstracts of RCTs. The first 
approach is an extractive approach based on our previous work that is extended to capture full document represen-
tations as well as by a clustering step to infer the number of instances of each template type. The second approach 
is a generative approach based on a seq2seq model that encodes the abstract describing the RCT and uses a decoder 
to infer a structured representation of a trial including its arms, treatments, endpoints and outcomes. Both approaches 
are evaluated with different base models on a manually annotated dataset consisting of RCT abstracts on an exist-
ing dataset comprising 211 annotated clinical trial abstracts for Type 2 Diabetes and Glaucoma. For both diseases, 
the extractive approach (with flan-t5-base) reached the best F1 score, i.e. 0.547 ( ±0.006 ) for type 2 diabe-
tes and 0.636 ( ±0.006 ) for glaucoma. Generally, the F1 scores were higher for glaucoma than for type 2 diabetes 
and the standard deviation was higher for the generative approach.

Conclusion In our experiments, both approaches show promising performance extracting structured PICO informa-
tion from RCTs, especially considering that most related work focuses on the far easier task of predicting less struc-
tured objects. In our experimental results, the extractive approach performs best in both cases, although the lead 
is greater for glaucoma than for type 2 diabetes. For future work, it remains to be investigated how the base model 
size affects the performance of both approaches in comparison. Although the extractive approach currently leaves 
more room for direct improvements, the generative approach might benefit from larger models.
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Introduction
The number of publications describing Randomized 
Controlled Trials has been increasing at an exponen-
tial pace for decades [1], thus making it more and more 
challenging to appropriately summarize the existing 
clinical evidence by way of systematic reviews. Yet, the 
ability to summarize the current clinical evidence is a 
core process to support evidence-based medical deci-
sion making [2]. Indeed, the creation of systematic 
reviews is costly and time consuming as it is done man-
ually by clinical experts with the result that systematic 
reviews and guidelines quickly become outdated after 
publication or are even outdated at the time of publica-
tion [3–6]. Due to the effort associated with the creation 
of systematic reviews, there has been significant interest 
on the question how to automate their creation [7–9]. 
Recently, approaches to automatically summarize clini-
cal evidence by way of argumentative structures have 
been proposed [10]. The bottleneck for such approaches 
is the missing availability of a database of semantically 
described clinical trials that comprise of structured 
representations of the key outcomes of each study. As 
argued by Sánchez-Graillet et  al. [10], information 
extraction approaches have the potential to support 
the extraction of key information about the design and 
results of clinical trials from publications. These struc-
tured representations of the results of a trial in turn 
could support the process of systematic review creation 
or at least considerably reduce the effort to do so.

Most RCTs follow the PICO (Patient, Intervention, 
Comparison, Outcomes) framework for structuring the 
presentation of clinical research findings. As a result, 
early IE approaches in the clinical domain classify full 
sentences of RCTs [11, 12] or smaller text spans [13] into 
the elements of the PICO framework. However, treating 
the PICO elements as flat objects represented as a col-
lection of text spans does not reflect the complex infor-
mation presented in RCTs for the following reasons: 1) 
the description of a single PICO element could be spread 
across several sentences and 2) the relationship between 
different PICO elements is not modelled (e.g. which out-
comes belong to the intervention group and which ones 
belong to the comparison group).

Witte and Cimiano [14] have proposed an extrac-
tive information extraction approach that captures 
the design and key results of an RCT by way of 10 dif-
ferent templates that capture the PICO elements in 
a structured way, modelling dependencies and rela-
tions between them. These templates are based on the 

C-TrO Ontology that has been designed to support 
use cases related to the aggregation of evidence from 
multiple clinical trials [15]. Those templates are instan-
tiated with information from a given abstract describ-
ing the trial. For instance, a template Medication 
with slots DrugName, DoseValue and DoseUnit 
could be used to describe medications of intervention 
arms mentioned in a RCT. However, Witte and Cimi-
ano [14] assume that the number of template instances 
(e.g. number of outcomes) is provided a-priori, which 
hinders the application of their approach in real world 
settings. Further, the approach of Witte and Cimiano 
[14] chunks the text into smaller segments and then 
combines the templates instantiated for each segment. 
This makes it difficult to capture relations that are men-
tioned across chunks.

In this paper, we build on the approach of Witte and 
Cimiano [14] and extend it in two directions. First, we 
rely on Longformers [16] and Flan-T5 [17] in order 
to encode the complete abstract, inferring template 
instances and slots jointly for the complete text. Sec-
ond, overcoming the key assumption that the number 
of template instances are known a priori, we extend the 
approach by a clustering step that induces the number 
of template instances in an unsupervised manner.

Beyond the extractive approach, we also present a 
generative approach that is inspired in recent seq2seq 
architectures such as REBEL [18] or GenIE [19]. These 
approaches rely on an encoder-decoder architecture by 
which the text is encoded and certain output structures 
are generated. We apply this idea to directly decode a 
complex nested template structure representing the 
design and key results of a study. As main novelties, we 
propose a decoding approach that relies on a grammar 
to guide decoding, ensuring that only valid structures 
are generated. Second, we present an approach to lin-
earize the structure to be predicted such that it can 
be encoded as a sequence to be predicted by the gen-
erative approach. Our grammar-constrained decoding 
approach is inspired by Lu et al. [20], who also prune/
mask the vocabulary to consist only of elements which 
comply with the desired output format. The decoding 
mechanism presented in this work generalizes the out-
put format specification to arbitrary right-linear con-
text-free grammars.

We evaluate and compare both approaches on the 
dataset provided by Sanchez-Graillet et  al. [21] and 
used in previous work [14], which consists of predict-
ing 10 templates. The dataset comprises a total of 211 
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documents for two diseases: type 2 diabetes (104) and 
glaucoma (107). Our results show that the improved 
extractive approach using Flan-T5 as a base model 
performs best for both diseases in the dataset, achiev-
ing a mean F1 score of 0.547 ( ±0.006 ) for type 2 dia-
betes and 0.636 ( ±0.006 ) for glaucoma. However, both 
approaches have different strengths and weaknesses 
and are not yet suitable to fully automate the process of 
systematic review creation, but still have the potential 
to reduce the necessary effort a lot.

Additional data and evaluations (Appendix 2, 4 and 5) as 
well as the used grammar (Appendix 1) and a case study 
(Appendix 3) can be found in the appendix.

In summary, our contributions are the following:

• We present an extension of the approach proposed 
by Witte and Cimiano [14] in two directions: i) rely-
ing on Longformers [16] and Flan-T5 [17] to encode 
the complete abstract and infer templates and slots 
for the complete document jointly, and ii) using a 
clustering step to cluster the extracted template 
instances to infer the number of instances for each 
template type.

• We present a novel generative information extraction 
approach that relies on a grammar to guide decoding, 
and propose a novel serialization of the nested tem-
plate structure such that the problem can be casted 
as a seq2seq inference problem.

• We evaluate both approaches on the dataset by 
Sanchez-Graillet et  al. [21] and show that our 
improved extractive approach using Flan-T5 [17] as a 
base model performs best for both diseases.

Related work
In recent years, a number of information extraction 
approaches have been developed, targeting tasks such as 
event extraction (e.g., Lu et al. [22], Hsu et al. [23], Yang 
et al. [20]), relation extraction (e.g., Giorgi et al. [24]) or 
role/slot/template filling (e.g. Du et  al. [25, 26]). With 
respect to biomedical information extraction, there are 
also several approaches which aim to solve different tasks 
specifically for the domain of biomedical texts, e.g. scien-
tific articles or clinical trials. Application domains range 
from event extraction (e.g., Wang et  al. [27], Ramponi 
et al. [28], Zhu and Zheng [29], Huang et al. [30], Trieu 
et al. [31]) over relation extraction (e.g., Jiang and Kavu-
luru [32, 33]) and question answering (e.g., Wang et  al. 
[27]) through to named entity recognition (e.g., Stylianou 
et al. [34]).

The set of methods and tools used to solve these prob-
lems is quite diverse, comprising joint end-to-end trans-
former models (e.g., Ramponi et  al. [28], Trieu et  al. 
[31], Jiang and Kavuluru [32], Stylianou et  al. [34]) as 

well as support vector machines (e.g., Kim and Meys-
tre [33]), conditional random fields (e.g., Stylianou et al. 
[35], Farnsworth et al. [34], Tseo et al. [36]), hybrid deep 
neural networks (e.g., Zhu and Zheng [29]) and Long 
Short-Term Memory networks (LSTMs, e.g., Jiang and 
Kavuluru [32], Kim and Meystre [33], Farnsworth et  al. 
[35]).

Some related work also deals with detecting clini-
cal trial outcomes, outcome spans (e.g., Abaho et  al. 
[37–39], Ganguly et al. [40]) or slot fillers (e.g., Papan-
ikolaou et  al. [41]) in (randomized) clinical trial 
abstracts. However, they lack the specific structure and 
dependencies of PICO templates and slots, which are 
used in this paper. These approaches mostly use trans-
former architectures, sometimes in combination with, 
e.g., LSTMs to detect the outcomes/slot fillers.

The PICO framework is frequently used to describe the 
results of RCTs in a structured way. This structure com-
prises of a number of templates and corresponding slots 
(which are uniquely assigned to a single template type). 
However, a RCT can contain multiple instances of a tem-
plate, imposing the problem of matching recognized slot 
fillers with their corresponding template instance.

Some efforts in this area focus on the problem that 
larger amounts of training data are missing or at least 
expensive to create due to the need for clinical experts 
as annotators. These approaches therefore utilize distant 
or weak supervision for training on noisy label data (e.g., 
Dhrangadhariya and Müller [42], Nye et al. [43], Wallace 
et al. [44], Liu et al. [45]). In contrast, the approach pre-
sented in this paper relies on the availability of sufficient 
classical supervised training data.

Other methods work with Conditional Random Fields 
(CRFs) in combination with (Bi-)LSTMs (e.g., Jin and 
Szolovits [46], Kang et  al. [47]) or rule-based methods 
(e.g., Chabou and Iglewski [48]).

While most recent work relies on transformer archi-
tectures, there are also diverse other approaches which 
utilize different machine learning techniques like sup-
port vector machines (e.g., Yuan et  al. [49]), convolu-
tional neural networks (e.g., Stylianou et al. [50]), LSTMs 
(e.g., Jin and Szolovits [51]) or other deep learning-based 
approaches (e.g., Afzal et al. [52]).

Several recent approaches use transformer models 
like BERT (Bidirectional Encoder Representations from 
Transformers, Devlin et  al. [53]) for PICO recogni-
tion, but focus on different architectual and task-related 
details.

However, some approaches refer to PICO elements as 
flat classes, i.e. parts of sentences are just labeled, e.g., 
P or I, whereas our approach considers PICO elements 
to be nested structures, i.e. templates with slots that 
have to be filled with some portion of text. Examples for 
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this simplified view on PICO elements are listed in the 
following:

Schmidt et al. [54] treat the PICO recognition task as 
a sentence classification/question answering task and 
thus, in contrast to the approach presented in this paper, 
do not work on the level of whole documents/abstracts 
or PICO elements which span multiple sentences. There-
fore, Schmidt et al. [54] do not benefit from contextual-
ized representations utilizing the whole abstract as a 
context. Moreover, the problem of mapping found PICO 
elements to unique template instances is not dealt with.

Zhang et  al. [55] propose a multi-step approach that 
first identifies P, I/C and O elements in the text using 
either Convolutional Neural Networks (CNNs) or Bi-
LSTMs. After that, a Diseases Named Entity Recognition 
model is used to extract disease-related entities in the 
PICO-labeled sentences. Various different models, like, 
e.g., BERT-based or LSTM-based models, are compared 
in this category. Finally, a mapping model resolves some 
ambiguities, like intersections of recognition results for 
P and O. Again, different models (including both BERT 
and Bi-LSTMs) are evaluated for this task. Although this 
approach makes some efforts to create more structured 
results than flat sentence classification, it still ignores 
some aspects of the more complex structure of PICO 
elements.

Whitton and Hunter [56] propose a more structured 
view on PICO elements, e.g., by differentiating between 
two arms of a RCT. This is achieved in two steps by first 
applying a named-entity recognition model, recognizing 
three general types of entities (interventions, outcomes 
and measures). In a second step, they are then related to 
each other using a relation extraction model which also 
differentiates between the (up to) two arms of the con-
sidered RCTs. However, they focus on evidence tables, 
which are different from the nested template structure 
we work with in this paper. Moreover, the other approach 
does not work in a sequence-to-sequence manner with 
constrained decoding like the generative approach 
described in this paper.

Dhrangadhariya et  al. [57] implement PICO recog-
nition for more fine-grained entities, which - similarly 
to our approach - also consider more detailed informa-
tion about participants, interventions and outcomes, 
like sample size, age, mortality, drugs or surgical inter-
ventions. Nevertheless, it is still less detailed than the 
template structure used in this paper, which consists of 
10 templates comprising overall 85 slots (see Witte and 
Cimiano [14]). Moreover, by using BERT as an encoder 
and Bi-LSTM, self-attention as well as CRF and linear 
layers for classification, it does not work in a sequence-
to-sequence manner like the generative approach we pre-
sent in this work.

Methods
In this work, we address the problem of extracting a set 
of template instances from unstructured text. We tackle 
this problem from two different perspectives and present 
two approaches solving the same problem: 1) an extrac-
tive approach and 2) a generative approach. An illustra-
tion of both approaches can be found in Fig. 1.

The used data model captures the design and key 
results of an RCT by way of 10 different templates con-
sisting of a total of 85 different slots that capture various 
aspects of the PICO elements in a structured way. These 
templates are based on the C-TrO Ontology that has been 
designed to support use cases related to the aggregation 
of evidence from multiple clinical trials [15]. The mean 
number of slot fillers per template is shown in Table  1. 
A template ti is defined by a type i ∈ L and a set of slots 
Si = j sij , where sij denotes slot j of template ti , 

⋃
j this 

way denotes the set union over all slots j and L denotes 
the set of all template types. A template is instantiated 
by assigning slot-fillers to its slots, where a slot-filler can 
be either a text span from the input document or a tem-
plate instance, depending on the slot. Figure 2 visualizes 
the used data model. In the following subsections, we 
describe the extractive and the generative approach in 
more detail.

Extractive approach
Our extractive approach is based on the Intra-Template 
Compatibility (ITC) approach [14], which adopts a two-
step architecture: In a first step, all textual slot-fillers are 
extracted from the input document, followed by a second 
step, which assigns the extracted slot-fillers to template 
instances. The extraction of slot-fillers and their cluster-
ing and assignment are described in  the “Extraction of 
textual slot-fillers” and “Assignment of textual slot-fillers 
to template instances” Sections, respectively.

Encoding of the input document
The ITC approach uses BERT (Bidirectional Encoder 
Representations from Transformers) [53] to compute 
a contextualized representation of each token wi of the 
input document d = (w1, . . . ,wn) . As the length of RCT 
abstracts typically exceeds the maximum number of 
tokens of most BERT implementations, the authors of 
ITC split the document into consecutive chunks and pro-
cess each chunk separately. However, this approach treats 
each chunk as an isolated unit and hence the model is 
not able to learn token representations which incorpo-
rate the context of the full input document. Therefore, we 
adopt the Longformer [16] approach as well as the Flan-
T5 model [17] to learn full-document contextualized 
representations hi ∈ R

d (with d = 768 for both T5 and 
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Longformer models) for each token wi of the input docu-
ment, where d is the output dimension of the encoder of 
the respective model.

Extraction of textual slot‑fillers
The ITC approach extracts slot-fillers from the input doc-
ument by predicting start and end tokens of slot-fillers, 
followed by a step which joins the predicted start and end 
tokens. This is realized by training two linear layers which 

take the contextualized representation hi of the tokens wi 
as input and predicts whether or not this is a slot-filler 
start or end token, respectively:

where S =
⋃

i Si ∪ {O} is the set of all slots including the 
special no-slot label O which indicates that a token is not 
classified as a start/end token of a slot-filler. The vectors 
ps,i , pe,i denote the predicted probability distribution over 
the slots that a token wi is the start/end of the respective 
slots. The final prediction is determined by the arg max 
operation.

The predicted start/end tokens are joined sentence-
wise by minimizing the distance between start and end 
tokens in terms of tokens in between. More precisely, for 
a given sentence, we first collect all predicted start and 
end tokens. For each predicted start token ws , at position 
i we seek an end token we at position j ≥ i with matching 
label and minimal distance to ws and assign it to ws as its 
end token. Finally, we discard predicted start/end tokens 
which have no matching end/start token. This slightly 
differs from the IOB format [58], as only start and end 
token of a sequence are tagged and all tokens in between 

(1)ps,i = softmax(Wshi + bs) Ws ∈ R
|S|×d

, bs ∈ R
|S|

(2)
pe,i = softmax(Wehi + be) We ∈ R

|S|×d
, be ∈ R

|S|

Fig. 1 Illustration of both described approaches starting with the tokenized input and ending with the generated template instances

Table 1 Mean and standard deviation of the number of slot 
fillers per template in the used dataset, separated by type of 
disease. Numbers rounded to two decimal places

Template Type 2 diabetes Glaucoma

Arm 7.01 ( ±2.79) 4.8 ( ±2.07)

ClinicalTrial 14.63 ( ±3.07) 15.1 ( ±3.12)

DiffBetweenGroups 3.61 ( ±0.81) 3.32 ( ±0.72)

Endpoint 1.68 ( ±0.85) 1.81 ( ±0.95)

EvidenceQuality 1.00 ( ±0.00) 4.00 ( ±0.00)

Intervention 1.91 ( ±0.79) 2.24 ( ±0.74)

Medication 1.98 ( ±1.11) 2.13 ( ±1.17)

Outcome 2.53 ( ±1.14) 3.45 ( ±1.62)

Population 3.13 ( ±1.86) 2.32 ( ±1.09)

Publication 12.45 ( ±3.44) 10.14 ( ±3.79)
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are classified just like tokens which are not part of any 
sequence. A comparison of both tagging schemes can be 
found in Table 2.

For each extracted slot-filler i with start/end tokens 
ws resp. we with corresponding token representations hs , 
resp. he , ITC computes a representation ei by summing 
the representations of the start and end tokens followed 
by a dense layer with ReLU [59] activation function:

The learned representations ei of the extracted slot-fill-
ers (SFs) are then used as input to subsequent modules. 
In the remainder of this paper, we denote the set of all 
extracted slot fillers as E , where each slot filler in E is rep-
resented by its vector representation computed by Eq. (3).

Assignment of textual slot‑fillers to template instances
Typically, for some slot types like the textual slot fillers of 
the Outcome template, there are several slot fillers of the 
same type extracted from an original document. Therefore, 

(3)ei = relu(Wr(hs + he)+ br) Wr ∈ R
d×d

, br ∈ R
d

we need a way to group these slot fillers such that actual 
template instances, e.g. multiple Outcome instances, can 
be created from these slot fillers. Deciding which slot fill-
ers belong together is however not a trivial task.

The assignment of extracted SFs to template instances 
is therefore done in ITC by a clustering approach per 
template based on a pairwise similarity or compatibil-
ity function q : R

d
× R

d
→ [0, 1] . q scores the similarity 

between two SFs in the sense that they belong to the same 
template instance, where g(ei, ej) = 1 indicates maxi-
mum similarity such that ei and ej should be assigned to 
the same template instance. Note that ei and ej are entity 
representations calculated based on the contextualized 
embeddings generated by the used models. Thus, we can 
use results from the established field of (density-based) 
clustering to figure out the SF grouping. The similarity 
function q is implemented in a slightly more complex 
way compared to the original paper, using two linear lay-
ers with a ReLU activation function in between and fol-
lowed by a sigmoid activation function:

Fig. 2 Schema of the PICO data model used in the experiments

Table 2 Comparison of used tagging schema with the IOB format, where O represents tokens outside of a sequence and I-Frequency 
represents tokens which are part of a slot filler sequence of type frequency. In contrast, None represents tokens which are neither start 
nor end token of a slot filler, start:Frequency marks the start and end:Frequency the end of a frequency slot filler sequence

Tokens NPH insulin once or twice daily in

IOB O O I-Frequency I-Frequency I-Frequency I-Frequency O

Used None None start:Frequency None None end:Frequency None



Page 7 of 23Witte et al. Journal of Biomedical Semantics            (2024) 15:3  

Note that due to the symmetry of + , also q is a sym-
metric function, i.e. q(ei, ej) = q(ej , ei) for all pairs of 
ei, ej . Then the mean pairwise similarity between SFs of a 
cluster Ci ⊆ E is given by

The score of a clustering Ci = {C1, . . . ,Cmi} of SFs 
Ei ⊆ E for template ti is the mean score of its cluster 
scores:

The ITC approach seeks a clustering C∗

i  of mi clusters 
which maximizes the score given by Eq. (7):

where Ui,mi denotes the set of all clusterings of the set 
Ei with mi clusters. Note that the optimization objec-
tive defined by Eq. (8) is parameterized by the number 
of clusters mi . In order to alleviate the assumption that 
the number of instances of templates needs to be known 
a priori, we propose a clustering step to induce the num-
ber of template instances per template type using Hierar-
chical Agglomerative Clustering (HAC) with a threshold 
based on the average of values computed for the training 
data, namely:

• the average similarity values of pairs belonging to the 
same template instance

• the average similarity values of pairs belonging to dif-
ferent instances

After the clustering C∗

i (mi) has been estimated, the 
template instances tij are derived from those clusters 
C∗

j ∈ C
∗

i (mi) . The slot to which a SF ek ∈ C∗

j  is assigned 
is given by the label assigned by the SF extraction module 
by Eqs. (1) and (2). In summary, the assignment of SFs to 
template instances is done as follows: 

1. For each template ti , the set Ei ⊆ E of SFs which can be 
assigned to instances of template type ti is estimated.

2. Equation (8) or Agglomerative Hierarchical Cluster-
ing is used to find some clustering of the SFs in Ei.

(4)
q′(ei , ej) = relu(Wh(ei + ej)+ bh) Wh ∈ R

d×d
, bh ∈ R

d

(5)
q(ei , ej) = σ(wT

s (q
′(ei , ej))+ bs) ws ∈ R

d
, bs ∈ R

(6)g(Ci) =
1

|Ci × Ci|

∑

(ei ,ej)∈Ci×Ci

q(ei, ej)

(7)h(Ci) =
1

|Ci|

∑

Ck∈Ci

g(Ck)

(8)C
∗

i (mi) = arg max
Ci∈Ui,mi

h(Ci)

3. The template instances are derived from the clusters 
in the clustering.

As an example, we consider the following four 
extracted slot fillers: 

1. PercentageAffected: 16
2. PercentageAffected: 8
3. TimePoint: week 24
4. TimePoint: week 12

Additionally, we assume our trained similarity function 
gives us the similarities presented in Table 3.

Given these similarities and a clustering threshold of, 
e.g., 0.5, this results in two clusters which can be then 
directly used to create the corresponding Outcome tem-
plate instances. These two clusters are: 

1. PercentageAffected: 16 and TimePoint: week 24
2. PercentageAffected: 8 and TimePoint: week 12

The clustering thus provides a robust and flexible way 
to both determine the number of template instances 
to generate as well as the groups of slot fillers those 
instances comprise.

Generative approach
In this section we propose a simple generative approach 
for extracting template instances from unstructured text 
based on the Transformer [60] encoder-decoder model. As 
encoder-decoder models require the output to be a linear 
token sequence, the set of TIs needs to be converted into 
a sequence of tokens. In Section “Linearization of sets of 
template instances”, we present a simple recursive method 
for linearizing sets of TIs along a context free grammar 
(CFG) for describing the linearized structures. In Sec-
tion “Decoding” we adopt the presented CFG for generat-
ing valid token sequences representing sets of TIs.

Table 3 Example similarities/compatibilities between four slot 
fillers, slot types in first row have been omitted

16 8 week 24 week 12

PercentageAffected: 16 - 0.1 0.7 0.4

PercentageAffected: 8 0.1 - 0.3 0.8

TimePoint: week 24 0.7 0.3 - 0.2

TimePoint: week 12 0.4 0.8 0.2 -
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Transformer‑based encoder‑decoder models
Transformer-based [60] encoder-decoder models are 
seq2seq models which haven been used on a variety of 
natural language processing tasks like machine transla-
tion [61] and text summarization [62]. The encoder part 
of the Transformer learns a contextualized represen-
tation of the input tokens w1, . . . ,wn via multi-headed 
self-attention [60], converting the input sequence into 
a sequence of vectors h1, . . . ,hn ∈ R

d , where d is the 
dimension of the Transformer model. Then the decoder 
part takes the vector sequence from the encoder 
as input and produces an output vector sequence 
d = (d1, . . . ,dn ∈ R

d) via multi-headed cross-attention. 
The computational complexity of self-attention grows 
quadratically with the number of tokens. Beltagy et  al. 
[16] proposed the Longformer encoder-decoder, which 
combines local and global multi-headed self-attention 
in the encoder, reducing computational complexity from 
O(n2) to O(n).

The output vector sequence d is used to compute a 
probability distribution over the vocabulary of the under-
lying model via the following equation:

where vi ∈ R
d is the embedding of token yi , bi is a bias for 

token yi , dt−1 is the output vector of the decoder at posi-
tion (t − 1) and d is the model dimension. The probability 
of token yt at position t is conditioned on the input token 
sequence x and the past decoded tokens y1, . . . , yt−1 . 
This dependence is encoded through the vector dt−1 via 
multi-headed self- and cross-attention.

Token prediction in the decoder is done by maximum 
a posteriori probability (MAP) inference. Hence the pre-
dicted token at position i is given by the token with maxi-
mal posterior probability:

The generative model is trained via teacher forcing by 
minimizing the cross entropy loss between the predicted 
token distribution described by Eq. (9) and the ground 
truth label.

Linearization of sets of template instances
As encoder-decoder models expect the output space 
to be token sequences, we present a simple recursive 
linearization procedure of template instances (TIs). 
First, note that TIs are described by the content of their 
slots (i.e., their slot-fillers), and that slot-fillers can be 
either text spans from the input document or other 
TIs. Hence the recursion base is given by the lineari-
zation of textual slot-fillers. Let f = wk1 , . . . ,wkm be a 

(9)p(yi|x, y1, . . . , yt−1) = softmax(vTi dt−1 + bi)

(10)yt = arg max
i

p(yi|x, y1, . . . , yt−1)

token sequence which represents a textual slot-filler f 
for a slot of name SLOT. Then the linearization of this 
slot-filler is the token sequence itself enclosed by the 
special tokens [start:SLOT] and [end:SLOT], i.e. 
[start:SLOT] ⊙ wk1 ⊙ . . .⊙ wkm⊙ [end:SLOT], 
where ⊙ denotes the concatenation of tokens. If the 
slot-filler is a TI, then it is recursively linearized and 
the resulting token sequence is enclosed by the special 
tokens [start:SLOT] and [end:SLOT]. The lin-
earization of TIs is described below.

In general, more than one slot-filler can be assigned to 
a slot of a TI. Therefore, we denote the complete content 
of a slot as a set F  of slot-fillers. As sets, in contrast to 
sequences, are unordered constructs by definition, the 
linearization of sets of slot-fillers is inherently ambigu-
ous. To get an unambiguous order, we introduce a slot 
ordering operator ω which converts sets of slot-fillers 
into sequences of slot-fillers according to predefined cri-
teria (e.g. position within input document in case of tex-
tual slot-fillers). Then sets F  of slot-fillers are linearized 
as follows: First, we sort the elements of F  according to 
the sorting operator ω and obtain a sequence F of slot-
fillers. Then we linearize each slot-filler in F as described 
above and concatenate the resulting token sequences, 
respecting the ordering of slot-fillers in F.

Next, we describe the linearization of TIs. As TIs are 
represented by the content of their slots, the lineariza-
tion of a TI has to include the linearization of its slots. 
However, a template does not impose any ordering of its 
slots, and hence the linearization order of the slots of a TI 
is undefined. Therefore, we introduce another ordering 
operator � which orders the slots of a template. Then the 
linearization of a TI is the concatenation of the lineari-
zations of its slots according to the ordering of its slots 
given by the ordering operator �.

Any set of TIs induces a graph with TIs as nodes and 
links between TIs as edges. Recall that there is a link from 
TI tij to TI tkl iff tkl is a slot-filler of tij . In order to guaran-
tee that the linearization algorithm described above is well 
defined, we require the induced graph to be 1) acyclic and 
2) connected. The first requirement ensures that the lin-
earization algorithm terminates, while the second ensures 
the absence of isolated TI, which can not be linearized.

However, choosing ω and � is only necessary for train-
ing but not for inference purposes, as the decoding allows 
to fill template slots in any order. Therefore, we choose 
arbitrary but fixed ω and � for the experiments described 
in the “Experimental results” Section.

A full example for a whole linearized publication tem-
plate instance can be found in Listing 2 in Appendix 6. A 
shorter example for an intervention template instance with 
both textual and template slot fillers can be found in Fig. 3.
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A context‑free grammar for describing linearization of sets 
of template instances
In the following, we describe the linearization of sets 
of TIs (described in Section  “Linearization of sets of 
template instances”) by a context-free grammar (CFG) 
which is used in the decoding process (“Decoding” Sec-
tion) to constrain the generation of tokens. A CFG is 
defined by a 4-tuple G = (N ,T ,R, S) , where N is a set of 
non-terminal symbols, T is a set of terminal symbols, R 
is a set of production rules and S ∈ T  is the start symbol 
of the grammar. The set of terminal symbols is defined 
by the vocabulary of the underlying encoder-decoder 
model together with some special tokens for defining the 
production rules R. The recursion base of the lineariza-

tions of sets of TIs is given by the linerization of textual 
slots which we describe by the following equation:

where TEMPLATE and SLOT are placeholders for names 
of template and slots, respectively, TEXT is a place-
holder for any token sequence from the input docu-
ment and [start:SLOT], [end:SLOT] are special 
tokens enclosing the textual slot-filler. Eq. (11) schemati-
cally defines production rules for textual slot-fillers, and 
TEMPLATE is the non-terminal symbol which is used 
to identify the respective production rules. Note that 
the non-terminal symbol TEMPLATE on the right-hand 
side of Eq. (11) allows recursion and hence the applica-
tion of more the one production rule associated with the 

(11)
TEMPLATE := [start:SLOT] TEXT [end:SLOT] TEMPLATE

non-terminal symbol TEMPLATE. The recursion base of 
production rules is given by

where TEMPLATE is again a placeholder for the template 
name and [end:TEMPLATE] is a special token indi-
cating the end of the linearization of the template TEM-
PLATE. Production rules for TIs are described by

Analogously to the production rules defined by Eq. (11) 
for textual slot-fillers, the production rules for slots con-
taining TIs as slot-fillers is defined by

where TEMPLATE_HEAD is a placeholder for any non-
terminal symbol whose associated production rules are 

derived from Eq. (13). Listing 1 shows the production 
rules for the data model used in our experiments.

Decoding
In Section  “A context-free grammar for describing lin-
earization of sets of template instances”, we presented a 
CFG which describes valid token sequences representing 
a set of TIs. In this section, we describe a simple method 
to constrain token prediction such that only such token 
sequences are generated which are valid according the 
CFG. For example, consider a slot Drug which can have 

(12)TEMPLATE := [end:TEMPLATE]

(13)
TEMPLATE_HEAD := [start:TEMPLATE] TEMPLATE

(14)TEMPLATE := [start:SLOT] TEMPLATE_HEAD [end:SLOT] TEMPLATE

Fig. 3 Illustration of linearization of an intervention template instance
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textual slot-fillers for describing drug names for a medi-
cation. After the special token [start:Drug] has been 
predicted, we know that the set of next possible tokens 
would consist of all tokens from the input document 
plus the special token [end:Drug]. This information is 
encoded by the CFG, and the decoding method described 
in this section uses this information to constrain token 
prediction.

In this paper, we slightly generalize the constrained 
decoding approach of Lu et  al. [20] to arbitrary right-
linear CFGs by applying a strategy similar to recursive 
descent parsing.

Beginning with a start symbol, in our case PUBLICA-
TION_HEAD, the set of possible next tokens is calculated 
in each decoding step. This set is then used to generate 
a mask for the model vocabulary to discard all tokens 
which would not comply with the production rules of 
the CFG. From the remaining tokens, we select the token 
with the maximum value in a greedy fashion. The imple-
mentation of a beam search to optimize the decoding 
output even more remains for future work.

To keep track of the decisions and possible next 
tokens, a stack data structure is used to guide the 
decoding. Whenever a start token of a slot like 
[start:NumberAffected] is chosen as the decoded 
token, this decision is saved by adding this to the decod-
ing stack. This is then used to constrain the tokens 
in the next step to be only those which can follow a 
[start:NumberAffected] token. Similarly, when an 
end token like [end:NumberAffected] is chosen, the 
top stack element is removed from the stack.

This way, the decoding is guided to comply with the 
requirements imposed by the CFG and this way ensuring 
the output can then be parsed into actual TIs.

Experimental results
In this section, we discuss the setting of our experiments 
as well as the results of those experiments.

Experimental setting
In our experiments, we use the same dataset as Witte 
and Cimiano [14] for type 2 diabetes and glaucoma. 
The dataset comprises a total of 211 documents for two 
diseases: type 2 diabetes (104) and glaucoma (107). The 
104 type 2 diabetes documents are split up into a train-
ing, validation and test sets of size 68, 16 and 20, respec-
tively. Analogously, the 107 glaucoma documents are 
split up into a training, validation and test sets of size 69, 
17 and 21, respectively. We use the same fixed train-val-
idation-test split and run separate experiments for those 
two diseases. Both the extractive and the generative 
approach were then evaluated using multiple base mod-
els, namely allenai/longformer-base-4096 

[16] for the extractive approach and allenai/
led-base-16384 [16] as well as google/flan-
t5-base [17] for both approaches. As the extractive 
approach requires just an encoder whereas the genera-
tive approach needs a decoder due to its seq2seq nature, 
we compare two encoder-decoder models from which 
only the encoder is used in the extractive approach. 
Additionally, we also evaluate an encoder-only model 
for the extractive approach to ensure the partial usage 
of the encoder-decoder models does not harm the 
performance.

For these models and diseases, we then run hyperpa-
rameter optimizations using Optuna [63] with 30 trials 
each and measuring performance using validation F1 
scores. In each trial, an initial learning rate (between 
1e−3 and 1e−5 , using logarithmic domain) and a � for 
the lambda learning rate scheduler (between 0.9 and 
1.0, using logarithmic domain, learning rate calculated 
with lr(epoch) = �

epoch ) are sampled from Optuna. The 
used batch size is 1 and the number of epochs is 50 in 
all experiments. Each experiment is then run on a sin-
gle NVIDIA A40 GPU. The best hyperparameters for 
each disease-approach-model-combination are then 
used to train 10 additional models. Unless stated dif-
ferently, mean and standard deviation in tables refer 
to the different results of these 10 training runs. The 
means and standard deviations of the test F1 scores of 
these 10 trained models are listed in Table  4 for each 
combination.

Slot‑filler extraction results
In all categories, the extractive approach paired with the 
flan-t5-base model performs best. In summary, for 
glaucoma, the extractive approach performs best with 
model flan-t5-base and a mean test F1 score of 0.636 
( ±0.006 standard deviation across the 10 training runs 
with the best found hyperparameters of the category). 
This way, it outperforms the other tested models of the 
extractive approach as well as all models of the genera-
tive approach by 0.02 or more. For type 2 diabetes, the 
extractive approach performs best as well with model 
flan-t5-base and a mean F1 score of 0.547 ( ±0.006 
standard deviation). This indicates that the extrac-
tive approach is superior to the generative approach, 
although the lead is much smaller for type 2 diabetes 
than for glaucoma.

Table 5 shows the mean F1 scores per template on the 
type 2 diabetes and glaucoma test set. The table shows 
the values of the best models of each category (w.r.t. 
validation F1 score), i.e. the flan-t5-base models in 
all four cases. The mean F1 values are calculated for 
each of the 10 models trained using the best hyperpa-
rameters of their respective category. The values in the 
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table correspond to the mean and standard deviation 
of those mean F1 scores per template. The generative 
approach performs better than the extractive one on 
the Medication templates (0.48 vs. 0.34 and 0.62 vs. 
0.53 F1 score for type 2 diabetes and glaucoma, respec-
tively). On the Population and Outcome template, 
the results are mixed with one approach performing 
better for one disease dataset but not for the other. On 
all six remaining templates, the extractive approach 
performs better, although with different margins.

Mean F1 scores per slot are shown in Table  7 in the 
Appendix 2, again with mean and standard deviation (of 
the mean F1 scores) calculated for the 10 models trained 
using the best hyperparameters of their respective cat-
egory. The F1 scores of the different slots range from over 
0.9, e.g. PMID or PublicationYear, to below 0.1, 
e.g. FinalNumPatientsArm or ObservedResult. 
There are also some noticeable differences between the 
diseases, with Journal achieving scores of 0.96 and 

0.92 for type 2 diabetes in contrast to 0.67 and 0.74 for 
glaucoma. There are also slots where one approach per-
forms better than the other across both datasets, e.g. 
DoseUnit (0.77/0.8 generative vs. 0.24/0.6 extractive) 
and NumberPatientsCT (0.65/0.65 generative vs. 
0.93/0.86 extractive).

Joint training on both datasets
Additionally to the main experiment described above, 
we ran another small experiment, training the best-
performing generative and extractive model (flan-
t5-base in both cases) with the best-performing 
respective parameters in 10 trials on the union of the 
type 2 diabetes and glaucoma training, validation and 
test datasets, respectively. The resulting models are then 
again evaluated on the separated datasets for compara-
bility reasons. The resulting mean F1 scores ( ±σ ) for the 
generative approach are 0.556 (± 0.026) for type 2 diabe-
tes and 0.626 (± 0.015) for glaucoma. For the extractive 

Table 4 Mean and standard deviation σ of test F1 scores across 10 models trained using best-performing ( F1 on validation dataset) 
configuration found in 30 trials of hyperparameter optimization. Numbers rounded to three decimal places, best configuration of each 
disease marked bold

Type 2 diabetes Glaucoma

 Model Mean F1 ( ±σ) Model Mean F1 ( ±σ)

Extractive

 flan‑t5‑base 0.547 (± 0.006) flan‑t5‑base 0.636 (± 0.006)
 led-base-16384 0.525 (± 0.009) led-base-16384 0.572 (± 0.010)

 longformer-base-4096 0.540 (± 0.008) longformer-base-4096 0.613 (± 0.007)

Generative

 flan-t5-base 0.539 (± 0.029) flan-t5-base 0.584 (± 0.025)

 led-base-16384 0.400 (± 0.079) led-base-16384 0.353 (± 0.106)

Table 5 Mean slot F1 values per template. Each cell shows mean and standard deviation of 10 training runs with the best found 
hyperparameters for best (w.r.t. validation F1 score) configurations of each category. Numbers rounded to two decimal places, best 
values marked bold

Type 2 diabetes F1 ( ±σ) Glaucoma F1 ( ±σ)

 Template name Generative Extractive Generative Extractive

Arm 0.7 (± 0.21) 0.87 (± 0.02) 0.34 (± 0.06) 0.36 (± 0.04)
ClinicalTrial 0.62 (± 0.02) 0.82 (± 0.02) 0.63 (± 0.03) 0.78 (± 0.02)
DiffBetweenGroups 0.41 (± 0.06) 0.45 (± 0.03) 0.28 (± 0.08) 0.37 (± 0.04)
Endpoint 0.39 (± 0.03) 0.43 (± 0.01) 0.33 (± 0.04) 0.42 (± 0.09)
Intervention 0.61 (± 0.06) 0.62 (± 0.02) 0.26 (± 0.02) 0.42 (± 0.12)
Medication 0.48 (± 0.02) 0.34 (± 0.02) 0.62 (± 0.08) 0.53 (± 0.02)

Outcome 0.2 (± 0.03) 0.11 (± 0.01) 0.35 (± 0.04) 0.38 (± 0.01)
Population 0.22 (± 0.03) 0.52 (± 0.07) 0.56 (± 0.04) 0.52 (± 0.03)

Publication 0.95 (± 0.03) 0.96 (± 0.01) 0.86 (± 0.02) 0.9 (± 0.02)
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approach, the mean F1 scores ( ±σ ) are 0.560 (± 0.007) 
for type 2 diabetes and 0.644 (± 0.008) for glaucoma. 
Therefore, the performance increases for both datasets 
and both approaches compared to the original results 
trained on the separated datasets. Moreover, the gen-
erative approach achieves comparable performance 
to the scores of the extractive approach trained on the 
separated datasets. At the same time, the extractive 
approach gets even better when also trained on both 
datasets at the same time.

Considering the relatively small datasets, this might 
indicate that performance for both diseases benefits 
from similar data in the other dataset, respectively. 
Therefore, we are optimistic that the training of a sin-
gle general model (in contrast to specialized models for 
each disease as described in the main experiment) is 
possible with comparable or even better performance 
on diseases the model has been trained on (i.e., in-dis-
tribution data) and acceptable performance on differ-
ent but similar diseases (i.e., out-of-distribution data). 
However, another dataset would be necessary to test 
this hypothesis such that this remains to be investi-
gated in future work.

Inferred template cardinality results
In this section, we evaluate the ability of our models 
to infer the correct number of instances for each tem-
plate type. For this, we compare the number of inferred 
templates to the number of instances in the gold stand-
ard by computing the mean abolsute deviation. Table 6 
shows the mean absolute deviation between the ground 
truth and predicted template cardinality of the best 
extractive and generative model on the type 2 diabe-
tes and glaucoma test sets. The mean absolute devia-
tion values are calculated separately for each of the 10 
models trained using the best hyperparameters of their 
respective category. The values in the table are then 
mean and standard deviation of those mean absolute 

deviations across the respective 10 trained models. 
Additionally, in Appendix 5, the corresponding mean 
ground truth (GT) and predicted template cardinali-
ties are listed in order to allow a judgement whether or 
not a certain deviation is high. Note that the templates 
Publication, ClinicalTrial and Population 
are not mentioned in these tables as their cardinality is 
always one.

On the type 2 diabetes dataset, the extractive 
approach yields better results than the generative 
approach in terms of template cardinality prediction 
for the DiffBetweenGroups, Endpoint and Medi-
cation templates, whereas the generative approach 
yields better results for the Arm, Intervention and 
Outcome templates. On the glaucoma dataset, the 
generative approach performs better than the extrac-
tive one in terms of cardinality inference on all tem-
plates except DiffBetweenGroups (0.39 vs. 0.17) and 
Endpoint (2.91 vs. 0.35).

Discussion
The overall slot-filler extraction results of both models 
in terms of micro F1 measure indicate that the extractive 
approach is slightly superior to the generative approach, 
although the margin is especially small for the type 2 
diabetes dataset (cf. Table  4). Moreover, the mean F1 
scores per template (Table 5) suggest that the extractive 
approach performs better than the generative one on 
most templates on both datasets.

However, the full picture is a little more complex and 
both approaches have areas in which they perform better 
or worse than the other one and vice versa, and that for a 
variety of reasons.

First, it is noticeable that the F1 scores for glaucoma 
are, on average, higher than those for type 2 diabetes. 
Nevertheless, the difference between the results for both 
datasets is not the same for both approaches, although 
the trend is the same. For the generative approach, the 

Table 6 Mean absolute deviation between ground truth and predicted template cardinality. Each cell shows mean and standard 
deviation of 10 training runs with the best found hyperparameters for best (w.r.t. validation F1 score) configurations of each category. 
Numbers rounded to two decimal places, best values marked bold

Type 2 diabetes Glaucoma

 Template name Generative Extractive Generative Extractive

Arm 0.01 (± 0.02) 1.09 (± 0.03)  0.02 (± 0.04) 1.33 (± 0.05)

DiffBetweenGroups 1.01 (± 0.96) 0.69 (± 0.08) 0.39 (± 0.36) 0.17 (± 0.13)
Endpoint 5.32 (± 1.11) 3.83 (± 0.03) 2.91 (± 1.09) 0.35 (± 0.22)
Intervention 0.1 (± 0.04) 1.22 (± 0.03) 0.19 (± 0.05) 0.8 (± 0.1)

Medication 0.21 (± 0.07) 0.18 (± 0.1) 0.11 (± 0.08) 0.47 (± 0.2)

Outcome 1.08 (± 0.82) 8.36 (± 0.07) 0.94 (± 0.57) 2.98 (± 0.04)
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performance of the best-performing flan-t5-base 
model decreases by just 0.045 (around 7.7% relatively) 
and the led-base-16384 version even increases its 
mean performance.

In contrast, the best-performing extractive version, 
again flan-t5-base, loses 0.089 (around 14% relatively) 
in terms of F1 performance - relatively almost twice as 
much as the generative approach. This may indicate that 
the extractive approach is better able to exploit certain 
characteristics which are specific to the glaucoma dataset 
and which are not present in the type 2 diabetes dataset, 
whereas the generative approach is more robust against 
those differences - both in a positive and in a negative 
way - and that way maybe generalizing a little more due 
to the more complex nature of the seq2seq task. How-
ever, it is not clear which properties of the data cause this 
deviation.

Considering robustness and the different complexity of 
the tasks of the extractive and generative task, this is to 
some degree also mirrored by the standard deviations of 
the two approaches. While the standard deviation for the 
extractive approach is not greater than 0.01, the stand-
ard deviation of the generative models is not smaller 
than 0.025 and gets up to 0.106 for led-base-16384. 
Therefore, it is more than doubled at least compared to 
the extractive approach.

Moreover, the standard deviation appears to be cor-
related to the chosen model, with flan-t5-base giv-
ing the lowest deviation, followed by (for the extractive 
part) longformer-base-4096 and finally led-
base-16384 consistently across both datasets.

The different strengths and weaknesses of both 
approaches become even more apparent examining the 
different performances separated by templates (Table 5) 
and, ultimately, single slots (Table 7 in the Appendix 2).

For whole templates, Table 5 shows an in parts mixed 
picture of which approach performs best. In many cases 
in which the extractive approach performs best, both 
approaches perform similarly well (e.g., Publication). 
However, there are also different cases like Clinical 
Trial where the margin is larger, but also Medica-
tion where the generative approach outperforms the 
extractive approach by around 0.1 although the standard 
deviation is also quite high for the generative glaucoma 
case. In other cases there are large differences between 
the two datasets, which is also true for the evaluation per 
slot.

As an example for unexpected single slot differences, 
consider the Journal slot. One would expect the 
recognition of the Journal slot to be a comparably 
simple task across both datasets. However, the perfor-
mance greatly differs between the datasets, although 
both approaches achieve good scores on this slot. For 

the type 2 diabetes dataset, the performance is nearly 
perfect with scores above 0.9. In contrast, the scores 
for the glaucoma dataset are still good but much worse 
with scores around 0.7. The different possible slot 
fillers are shown in Table  9 in the Appendix 4. Look-
ing at the different slot fillers, it is not immediately 
clear why the diabetes case is so much easier for both 
approaches than the glaucoma case. Both tables have 
approximately the same number of different entries 
and in both cases the journal names are in many cases 
trivial to recognize (containing either Diabetes or 
Ophthalmol).

However, the distribution of occurrences might par-
tially explain the performance differences here. Although 
both datasets have similar number of Journal slot fill-
ers with up to three occurrences, only the type 2 diabetes 
dataset has (even multiple) Journal slot fillers with a 
high number of occurrences (more than ≈ 8 , e.g.). There-
fore, the reason why the Journal slot appears to be so 
much easier to recognize in the type 2 diabetes dataset 
might not be due to the textual form of the slot fillers 
but instead because fewer slot fillers account for a larger 
majority of the general slot occurrences compared to the 
glaucoma dataset. The absolute numbers and differences 
are still quite small, however, but this might allow to 
get much better scores just by recognizing two or three 
Journal slot fillers. There may be many more examples 
which are not discussed here.

All in all it is not clear in all cases what properties of 
the data cause those partial differences in performance. 
However, it underlines on the one hand how much data 
variance can influence information extraction approaches 
like the two presented ones. On the other hand, this also 
emphasizes how both approaches can have different 
strengths and weaknesses and a flat evaluation only con-
sidering the final single performance score does not do 
justice to the complex nature of the task.

Case study
Similarly to the work by Witte and Cimiano [14], we con-
duct a case study on a single RCT abstract in which we 
compare the predicted and ground truth results for one 
exemplary document out of the type 2 diabetes test data-
set. For this case study, we use the same publication as 
considered by Witte and Cimiano [14] which is the one 
by Shankar et al. [64]. The results of this case study can 
be found in Table 8 in the Appendix 3.

Both the extractive and the generative approach suc-
ceed in extracting the basic characteristics of the trial 
which are part of the Publication template, e.g. 
authors, title and publication year. This is consistent with 
the results of Table  5, which indicate that Publica-
tion is an especially easy template to extract. Similarly, 
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the ClinicalTrial and Medication instances are, 
except some small errors, extracted almost perfectly. The 
template instance for the used Intervention is also 
extracted without errors by both approaches, which is 
a little more surprising taking into account the slightly 
lower score of around 0.6. Moreover, both approaches 
correctly predict that there are no textual slot fillers of 
the Arm template in the text.

For the Population template instance, we first 
encounter moderate differences to the gold standard. 
Although both approaches manage to extract USA as 
slot fillers for the Country slot, both fail to extract the 
second slot filler Australia as well as Ethnicity. 
The latter is at least in line with the fact that the first gold 
standard precondition - mentioning the ethnicity of the 
patients - is not recognized by both approaches. For the 
second Precondition slot filler, both approaches get 
a part of it but not the full slot filler, with the generative 
approach recognizing a slightly larger part of the actual 
slot filler. This is to some degree unexpected, as the mean 
performance of the extractive approach on the Popu-
lation templates of the type 2 diabetes dataset is more 
than twice as high as the score of the generative approach.

For the DiffBetweenGroups template, the extractive 
approach returns a perfect result in this case, whereas the 
generative approach misses the P < 0.001 slot filler but 
delivers a duplicate of the P = 0.013 slot filler. The mean 
results of Table 5 suggest similar performance, which is not 
the case here.

For the Endpoint template instances, both approaches 
manage to extract most slot fillers at least partially but 
show issues grouping them together correctly. The extrac-
tive approach puts all of the extracted slot fillers in just two 
instances, missing most instances of the gold standard. 
For the generative approach, however, it is the other way 
around and too many instances (containing some dupli-
cates) are generated. Nevertheless, some of the generated 
instances are correct and in some cases there is just a part 
missing. Generally, the performance is rather unsatisfying 
here but is consistent with the comparably poor mean per-
formance of around 0.4 on the Endpoint template, indi-
cating this is an especially hard template to extract.

However, the situation is even worse for the Outcome 
template instances, which was to be expected consider-
ing the mean performance on the type 2 diabetes data-
set of just 0.2 and 0.11 for the generative and extractive 
approach, respectively. Again, both approaches at least 
partially recognize most slot fillers, but fail to group them 
together correctly. Similarly to the Endpoint template 
instances, the extractive approach generates too few 
instances whereas the generative approach generates 
more instances. Nevertheless, those instances are not 
entirely correct in most cases. This suggests future work 

has to improve this grouping beyond simple similarity 
calculations or fully relying on the language model and 
constrained decoding.

Taken together, the current results, while promis-
ing, are not accurate enough to support the full auto-
matic creation of a systematic review as proposed by 
Sanchez-Graillet et  al. [10]. However, the proposed 
approach could considerably reduce the workload for 
teams to extract key information from a set of publica-
tions in the sense proposed by Thomas et al. [65]. The 
results, however, would need to be manually controlled. 
While the approach is not yet suited to support the full 
creation of a systematic review at high-quality, it could 
be used to summarize the existing literature in a cost-
effective fashion to allow researchers to get a first over-
view of existing clinical evidence or as a basis to form 
hypothesis to be validated further on.

Conclusion
We have presented an extended extractive and a gen-
erative approach for extracting structured information 
from Randomized Controlled Trial abstracts, which 
can both support clinicians in finding best therapies on 
the basis of clinical evidence and in creating systematic 
reviews of the whole body of available clinical evidence. 
The extractive approach is realized by a two-step archi-
tecture which first extracts slot-fillers from the input 
document, followed by a clustering step which assigns 
the extracted slot-fillers to template instances. The 
best models of this approach yield an average F1 score 
of 0.547 on type 2 diabetes and 0.636 on glaucoma test 
sets, respectively. In the generative approach, the struc-
tured information given by the template instances is 
encoded as a linear token sequence which is decoded at 
inference time by utilizing a context-free grammar for 
guidance. The best models of the generative approach 
yield an average F1 score of 0.539 on type 2 diabetes and 
0.584 on glaucoma test sets, respectively.

Future work should investigate whether the lead of 
the extractive approach persists when the base models 
of both approaches are scaled up, e.g. by using flan-
t5-large, flan-t5-xl or even flan-t5-xxl or 
other large language models. The benefits of the extrac-
tive and generative approach could also be combined 
by adding a pointer network to the generative model. 
We will also investigate whether integrating a pointer 
network into the generative model can improve results. 
It would be also interesting to test the results in an 
actual evidence generation and comparison case study 
to assess whether the approach can indeed support the 
process of summarizing results from the clinical litera-
ture for a particular research question.
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Appendix 1 Grammar definition

Listing 1 Grammar of the data model used for decoding in our 
experiments

Appendix 2 Slot evaluation

Table 7 Mean test F1 scores of the best models of each category 
per slot (mean and standard deviation of 10 training runs)

Type 2 diabetes F1 Glaucoma F1

 Slot name Generative Extractive Generative Extractive

Aggregation-
Method

0.41 (± 0.07) 0.54 (± 0.03) 0.52 (± 0.08) 0.67 (± 0.13)

AllocationRatio 0.0 (± 0.0) 0.92 (± 0.05) - -

analysesHealth-
Condition

0.84 (± 0.05) 0.73 (± 0.06) 0.87 (± 0.02) 0.86 (± 0.03)

Author 0.97 (± 0.03) 0.92 (± 0.01) 0.8 (± 0.02) 0.94 (± 0.04)

AvgAge 0.0 (± 0.0) 0.37 (± 0.06) - -

BaselineUnit 0.42 (± 0.03) 0.44 (± 0.05) 0.54 (± 0.06) 0.56 (± 0.07)

BaselineValue 0.49 (± 0.06) 0.3 (± 0.03) 0.67 (± 0.08) 0.59 (± 0.03)

CTDesign 0.82 (± 0.02) 0.9 (± 0.01) 0.8 (± 0.04) 0.82 (± 0.03)

CTduration 0.89 (± 0.03) 0.89 (± 0.04) 0.78 (± 0.06) 0.87 (± 0.04)

ChangeValue 0.41 (± 0.06) 0.19 (± 0.05) 0.59 (± 0.07) 0.52 (± 0.05)

ConclusionCom-
ment

0.73 (± 0.04) 0.88 (± 0.04) 0.84 (± 0.02) 0.91 (± 0.02)

ConfInterval-
ChangeValue

0.0 (± 0.0) 0.0 (± 0.0) - -

ConfIntervalDiff 0.46 (± 0.12) 0.43 (± 0.05) 0.29 (± 0.11) 0.28 (± 0.11)

Country 0.68 (± 0.07) 0.64 (± 0.08) 0.86 (± 0.05) 0.86 (± 0.03)

DeliveryMethod 0.0 (± 0.0) 0.0 (± 0.0) 0.34 (± 0.2) 0.42 (± 0.06)

DiffGroupAb-
sValue

0.45 (± 0.09) 0.43 (± 0.06) 0.31 (± 0.16) 0.43 (± 0.11)

DoseDescription 0.0 (± 0.0) 0.0 (± 0.0) - -

DoseUnit 0.77 (± 0.04) 0.24 (± 0.04) 0.8 (± 0.08) 0.6 (± 0.06)

DoseValue 0.79 (± 0.04) 0.77 (± 0.07) 0.75 (± 0.07) 0.65 (± 0.06)

Drug 0.82 (± 0.05) 0.7 (± 0.02) 0.58 (± 0.04) 0.45 (± 0.06)

Duration - - 0.0 (± 0.0) 0.2 (± 0.32)

EndoPointDe-
scription

0.34 (± 0.02) 0.3 (± 0.02) 0.26 (± 0.05) 0.25 (± 0.03)

FinalNumPa-
tientsArm

0.0 (± 0.0) - 0.0 (± 0.0) 0.02 (± 0.06)

FinalNumberPa-
tientsCT

- - 0.0 (± 0.0) 0.64 (± 0.13)

Frequency 0.61 (± 0.06) 0.62 (± 0.02) 0.77 (± 0.06) 0.71 (± 0.04)

Journal 0.96 (± 0.05) 0.92 (± 0.05) 0.67 (± 0.08) 0.74 (± 0.07)

Measurement-
Device

- - 0.0 (± 0.0) 0.2 (± 0.32)

MinAge 0.0 (± 0.0) 0.67 (± 0.17) - -

NumberAffected 0.16 (± 0.19) 0.08 (± 0.13) 0.4 (± 0.22) 0.0 (± 0.0)

NumberPatient-
sArm

0.83 (± 0.09) 0.87 (± 0.02) 0.68 (± 0.12) 0.7 (± 0.06)

NumberPa-
tientsCT

0.65 (± 0.08) 0.93 (± 0.04) 0.65 (± 0.09) 0.86 (± 0.02)

ObjectiveDe-
scription

0.43 (± 0.06) 0.49 (± 0.05) 0.49 (± 0.07) 0.51 (± 0.09)

ObservedResult 0.03 (± 0.03) 0.01 (± 0.01) 0.01 (± 0.03) 0.0 (± 0.0)

PMID 0.97 (± 0.03) 1.0 (± 0.0) 0.98 (± 0.02) 0.99 (± 0.01)

PValueChan-
geValue

0.1 (± 0.11) 0.0 (± 0.0) 0.0 (± 0.0) 0.33 (± 0.05)
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Type 2 diabetes F1 Glaucoma F1

 Slot name Generative Extractive Generative Extractive

PercentageAf-
fected

0.59 (± 0.08) 0.21 (± 0.03) 0.31 (± 0.18) 0.15 (± 0.03)

Precondition 0.22 (± 0.08) 0.4 (± 0.07) 0.27 (± 0.05) 0.18 (± 0.04)

PublicationYear 0.97 (± 0.03) 1.0 (± 0.0) 0.98 (± 0.02) 1.0 (± 0.0)

PvalueDiff 0.31 (± 0.05) 0.48 (± 0.02) 0.24 (± 0.06) 0.39 (± 0.06)

RelativeChan-
geValue

0.04 (± 0.09) 0.0 (± 0.0) 0.13 (± 0.2) 0.57 (± 0.12)

RelativeFreq-
Time

- - 0.0 (± 0.0) 0.36 (± 0.1)

ResultMeasured-
Value

0.27 (± 0.07) 0.21 (± 0.04) 0.57 (± 0.07) 0.35 (± 0.02)

SdDevBL 0.18 (± 0.18) 0.14 (± 0.19) 0.53 (± 0.09) 0.62 (± 0.05)

SdDevChan-
geValue

0.02 (± 0.06) 0.0 (± 0.0) 0.38 (± 0.14) 0.45 (± 0.07)

SdDevResValue 0.2 (± 0.13) 0.19 (± 0.02) 0.62 (± 0.13) 0.34 (± 0.02)

SdErrorChan-
geValue

- - 0.0 (± 0.0) 0.57 (± 0.0)

SubGroupDe-
scription

0.0 (± 0.0) 0.0 (± 0.0) - -

TimePoint 0.35 (± 0.11) 0.22 (± 0.03) 0.39 (± 0.07) 0.41 (± 0.03)

Title 0.86 (± 0.05) 0.93 (± 0.02) 0.88 (± 0.06) 0.85 (± 0.03)

Total Micro F1 
Score

0.54 (± 0.03) 0.55 (± 0.01) 0.58 (± 0.02) 0.64 (± 0.01)

Appendix 3 Case study

Table 8 Case study for disease Type 2 Diabetes. Multiple entries 
for same slot in same template instance separated by |

Slot name Gold standard Extractive 
prediction

Generative 
prediction

Template Publication
describes

Author Shankar RR | Bao 
Y | Han P | Hu 
J | Ma J | Peng 
Y | Wu F | Xu L | 
Engel SS | Jia W

Shankar RR | Bao 
Y | Han P | Hu 
J | Ma J | Peng 
Y | Wu F | Xu L | 
Engel SS | Jia W

Shankar RR | Bao 
Y | Han P | Hu J | 
Ma J | Peng Y | Wu 
F | Xu L | Engel SS 
| Jia W

Journal J Diabetes 
Investig.

J Diabetes 
Investig.

J Diabetes 
Investig.

PMID 27740719 27740719 27740719

PublicationYear 2017 2017 2017

Title Sitagliptin 
added to stable 
insulin therapy 
with or without 
metformin 
in Chinese 
patients 
with type 2 
diabetes.

Sitagliptin 
added to stable 
insulin therapy 
with or without 
metformin 
in Chinese 
patients 
with type 2 
diabetes.

Sitagliptin 
added to stable 
insulin therapy 
with or without 
metformin in Chi-
nese patients 
with type 2 
diabetes.

Template Intervention
Frequency once daily once daily once daily

Medication

Slot name Gold standard Extractive 
prediction

Generative 
prediction

Template Population
Country USA | Australia USA USA

Ethnicity Chinese

Precondition Chinese patients 
with type 2 
diabetes mel-
litus receiving 
stable insulin 
therapy alone 
or in combina-
tion with met-
formin | patients 
with inadequate 
glycemic con-
trol on insulin ( 
glycated hemo-
globin [ HbA1c 
] < 7. 5 % and < 
11 % )

patients 
with inadequate 
glycemic con-
trol on insulin

patients 
with inadequate 
glycemic control 
on insulin ( 
glycated hemo-
globin [ HbA1c 
] <

Template Arm
AdverseEffect

Intervention

Outcome

Template Endpoint
BaselineUnit % %

EndoPointDe-
scription

HbA1c HbA1c of <7. 
0 %

adverse events

BaselineUnit mg / dL | mg 
/ dL

EndoPointDe-
scription

HbA1c of < 7. 
0 %

fasting plasma 
glucose | 2 - h 
post - meal glu-
cose | adverse 
events of hypo-
glycemia

hypoglycemia

BaselineUnit mg / dL %

EndoPointDe-
scription

2 - h post - meal 
glucose

HbA1c

BaselineUnit mg / dL

EndoPointDe-
scription

fasting plasma 
glucose

HbA1c of <

BaselineUnit mg / dL

EndoPointDe-
scription

hypoglycemia 
( symptomatic 
or asympto-
matic )

2 - h post - meal 
glucose

BaselineUnit

EndoPointDe-
scription

bodyweight fasting plasma 
glucose

BaselineUnit

EndoPointDe-
scription

adverse events

BaselineUnit

EndoPointDe-
scription

hypoglycemia

BaselineUnit %

EndoPointDe-
scription

HbA1c
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Slot name Gold standard Extractive 
prediction

Generative 
prediction

BaselineUnit

EndoPointDe-
scription

HbA1c of <

BaselineUnit mg / dL

EndoPointDe-
scription

2 - h post - meal 
glucose

BaselineUnit

EndoPointDe-
scription

fasting plasma 
glucose

Template ClinicalTrial
analysesHealth-
Condition

type 2 diabetes 
mellitus

type 2 diabetes type 2 diabetes 
mellitus

AllocationRatio 1 : 1 1 : 1

Arm

CTDesign randomized randomized randomized

CTduration 24 weeks 24 weeks 24 weeks

Conclusion-
Comment

After 24 weeks, 
sitagliptin 
added to stable 
insulin therapy 
( < metformin 
) was generally 
well tolerated 
and improved 
glycemic 
control in Chi-
nese patients 
with type 2 dia-
betes mellitus.

After 24 weeks, 
sitagliptin 
added to stable 
insulin therapy 
( <metformin ) 
was generally 
well tolerated 
and improved 
glycemic 
control in Chi-
nese patients 
with type 2 dia-
betes mellitus.

After 24 weeks, 
sitagliptin 
added to stable 
insulin therapy ( 
< | ) was gener-
ally well tolerated 
and improved 
glycemic control 
in Chinese 
patients with type 
2 diabetes mel-
litus.

DiffBetween-
Groups

NumberPa-
tientsCT

467 467 467

ObjectiveDe-
scription

We evaluated 
the tolerability 
and efficacy 
of the addition 
of sitagliptin 
in Chinese 
patients 
with type 2 
diabetes mel-
litus receiving 
stable insulin 
therapy alone 
or in combina-
tion with met-
formin.

We evaluated 
the tolerability 
and efficacy 
of the addition 
of sitagliptin 
in Chinese 
patients 
with type 2 
diabetes mel-
litus receiving 
stable insulin 
therapy alone 
or in combina-
tion with met-
formin.

We evaluated 
the tolerability 
and efficacy 
of the addition 
of sitagliptin 
in Chinese 
patients with type 
2 diabetes mel-
litus receiving 
stable insulin 
therapy alone 
or in combination 
with metformin.

Population

Template Medication
DoseUnit mg mg

DoseValue 100 100 100

Drug sitagliptin sitagliptin sitagliptin

DoseUnit mg

DoseValue

Drug placebo placebo placebo

Template Outcome
ChangeValue 0. 7 0. 7

Slot name Gold standard Extractive 
prediction

Generative 
prediction

Endpoint

NumberAf-
fected

64

ObservedResult

PercentageAf-
fected

27. 4

TimePoint week 24

ChangeValue 0. 3 26. 5 | 0. 3 | 14. 4

Endpoint

NumberAf-
fected

51

ObservedResult

PercentageAf-
fected

16 | 21. 9 | 64 | 8 
| 27. 4 | 51

21. 9

TimePoint week 24

ChangeValue 0. 7

Endpoint

NumberAf-
fected

ObservedResult

PercentageAf-
fected

16

TimePoint week 24 week 24

ChangeValue

Endpoint

NumberAf-
fected

ObservedResult

PercentageAf-
fected

8 16

TimePoint week 24 week 24

ChangeValue 26. 5

Endpoint

NumberAf-
fected

ObservedResult

PercentageAf-
fected

TimePoint

ChangeValue 14. 4

Endpoint

NumberAf-
fected

51

ObservedResult

PercentageAf-
fected

21. 9

TimePoint

ChangeValue 10. 7

Endpoint

NumberAf-
fected

51

ObservedResult
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Slot name Gold standard Extractive 
prediction

Generative 
prediction

PercentageAf-
fected

21. 9

TimePoint

ChangeValue 0. 3

Endpoint

NumberAf-
fected

64

ObservedResult

PercentageAf-
fected

27. 4

TimePoint week 24

ChangeValue

Endpoint

NumberAf-
fected

51

ObservedResult

PercentageAf-
fected

21. 9 8

TimePoint week 24

ChangeValue

Endpoint

NumberAf-
fected

ObservedResult Neither group 
had a sig-
nificant change 
from baseline 
in bodyweight.

PercentageAf-
fected

TimePoint

Template DiffBetweenGroups
Outcome1

Outcome2

PvalueDiff P < 0. 001 P <0. 001 P = 0. 013

Outcome1

Outcome2

PvalueDiff P = 0. 013 P = 0. 013 P = 0. 013

Outcome1

Outcome2

PvalueDiff P < 0. 001 P <0. 001

Appendix 4 Journal slot fillers

Table 9 Slot fillers of slot Journal with number of occurrences 
in the type 2 diabetes dataset and glaucoma training and test 
datasets

Type 2 diabetes # Glaucoma #

‘Ann Intern Med .’ 2 ‘Acta Ophthalmol .’ 1

‘Arch Intern Med .’ 1 ‘Acta Ophthalmol Scand .’ 3

‘Arch Med Res .’ 1 ‘Acta Ophthalmol Scand’ 2

‘BMC Endocr Disord .’ 1 ‘Acta Ophthalmol’ 1

‘Cardiovasc Diabetol .’ 1 ‘Adv Ther .’ 2

‘Clin Drug Investig .’ 1 ‘Am J Ophthalmol .’ 4

‘Clin Ther .’ 4 ‘Am J Ophthalmol’ 2

‘Curr Med Res Opin .’ 6 ‘Arch Ophthalmol .’ 3

‘Diabet Med .’ 6 ‘BMC Ophthalmol .’ 2

‘Diabetes Care .’ 2 ‘Br J Ophthalmol .’ 5

‘Diabetes Care’ 12 ‘Br J Ophthalmol’ 1

‘Diabetes Metab Res Rev .’ 2 ‘Clin Ophthalmol’ 1

‘Diabetes Obes Metab .’ 19 ‘Clin Ther .’ 4

‘Diabetes Res Clin Pract .’ 1 ‘Clin Ther’ 1

‘Diabetes Technol Ther .’ 2 ‘Coll Antropol’ 1

‘Diabetes’ 1 ‘Curr Med Res Opin .’ 5

‘Diabetologia’ 3 ‘Curr Med Res Opin’ 1

‘Endocr J .’ 1 ‘Curr Ther Res Clin Exp .’ 1

‘Exp Clin Endocrinol Diabetes’ 1 ‘Eur J Ophthalmol .’ 2

‘Horm Metab Res .’ 3 ‘Eur J Ophthalmol’ 1

‘Horm Res .’ 1 ‘Eye ( Lond ) .’ 6

‘J Diabetes Complications’ 2 ‘Eye ( Lond )’ 1

‘J Diabetes Investig .’ 1 ‘Graefes Arch Clin Exp Oph-
thalmol .’

4

‘J Diabetes’ 3 ‘Int Ophthalmol .’ 1

‘Lancet’ 2 ‘Invest Ophthalmol Vis Sci .’ 1

‘Med J Malaysia’ 1 ‘J Fr Ophtalmol .’ 1

‘Obesity ( Silver Spring )’ 1 ‘J Glaucoma’ 9

‘Open Access Maced J Med 
Sci .’

1 ‘J Ocul Pharmacol .’ 1

‘PLoS One’ 1 ‘J Ocul Pharmacol Ther .’ 5

‘Pediatr Diabetes’ 1 ‘J Ocul Pharmacol Ther’ 2

‘Pharmacotherapy’ 1 ‘Jpn J Ophthalmol’ 2

‘Srp Arh Celok Lek .’ 1 ‘Lancet’ 1

‘Nippon Ganka Gakkai Zasshi .’ 1

‘Ophthalmology’ 8

‘Saudi Med J’ 1

‘Surv Ophthalmol .’ 1
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Appendix 5 Template cardinalities

Table 10 Cardinality Evaluation Type 2 Diabetes Generative

Template name Mean GT count Mean predicted count Abs diff

Arm 2.00 1.99 (± 0.02) 0.01 (± 0.02)

DiffBetweenGroups 2.75 3.78 (± 0.95) 1.01 (± 0.96)

Endpoint 5.85 11.16 (± 1.11) 5.32 (± 1.11)

EvidenceQuality 1.00 0.0 (± 0.0) 1.0 (± 0.0)

Intervention 2.10 2.0 (± 0.04) 0.1 (± 0.04)

Medication 2.20 1.99 (± 0.07) 0.21 (± 0.07)

Outcome 10.35 11.16 (± 1.11) 1.08 (± 0.82)

Table 11 Cardinality Evaluation Type 2 Diabetes Extractive

Template name Mean GT count Mean predicted count Abs diff

Arm 2.00 0.91 (± 0.03) 1.09 (± 0.03)

DiffBetweenGroups 2.75 2.06 (± 0.08) 0.69 (± 0.08)

Endpoint 5.85 2.02 (± 0.03) 3.83 (± 0.03)

EvidenceQuality 1.00 0.0 (± 0.0) 1.0 (± 0.0)

Intervention 2.10 0.88 (± 0.03) 1.22 (± 0.03)

Medication 2.20 2.02 (± 0.1) 0.18 (± 0.1)

Outcome 10.35 1.99 (± 0.07) 8.36 (± 0.07)

Table 12 Cardinality Evaluation Glaucoma Generative

Template name Mean GT count Mean predicted count Abs diff

Arm 2.00 1.98 (± 0.04) 0.02 (± 0.04)

DiffBetweenGroups 1.62 1.99 (± 0.38) 0.39 (± 0.36)

Endpoint 2.48 5.39 (± 1.09) 2.91 (± 1.09)

EvidenceQuality 1.00 0.0 (± 0.0) 1.0 (± 0.0)

Intervention 2.19 2.0 (± 0.05) 0.19 (± 0.05)

Medication 2.33 2.31 (± 0.14) 0.11 (± 0.08)

Outcome 5.05 5.39 (± 1.09) 0.94 (± 0.57)

Table 13 Cardinality Evaluation Glaucoma Extractive

Template name Mean GT count Mean predicted count Abs diff

Arm 2.00 0.67 (± 0.05) 1.33 (± 0.05)

DiffBetweenGroups 1.70 1.85 (± 0.16) 0.17 (± 0.13)

Endpoint 2.48 2.13 (± 0.22) 0.35 (± 0.22)

EvidenceQuality 1.00 0.0 (± 0.0) 1.0 (± 0.0)

Intervention 2.19 1.39 (± 0.1) 0.8 (± 0.1)

Medication 2.33 1.86 (± 0.2) 0.47 (± 0.2)

Outcome 5.05 2.07 (± 0.04) 2.98 (± 0.04)
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Appendix 6 Linearized publication
 

Listing 2 Linearization of Glaucoma Publication Template Instance
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LED  Longformer-encoder-decoder
LSTM  Long short-term memory network
MAD  Mean absolute deviation
MAP  Maximum a posteriori probability
PICO  Patient, intervention, comparison, outcomes
RCT   Randomized controlled trial
REBEL  Relation extraction by end-to-end language generation
ReLU  Rectified linear unit
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T5  Text-to-text transfer transformer
TI  Template instance
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