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Toward a comprehensive drug ontology:
extraction of drug-indication relations from
diverse information sources
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Abstract

Background: Drug ontologies could help pharmaceutical researchers overcome information overload and speed
the pace of drug discovery, thus benefiting the industry and patients alike. Drug-disease relations, specifically
drug-indication relations, are a prime candidate for representation in ontologies. There is a wealth of available
drug-indication information, but structuring and integrating it is challenging.

Results: We created a drug-indication database (DID) of data from 12 openly available, commercially available, and
proprietary information sources, integrated by terminological normalization to UMLS and other authorities. Across
sources, there are 29,964 unique raw drug/chemical names, 10,938 unique raw indication ”target” terms, and
192,008 unique raw drug-indication pairs. Drug/chemical name normalization to CAS numbers or UMLS concepts
reduced the unique name count to 91 or 85% of the raw count, respectively, 84% if combined. Indication ”target”
normalization to UMLS ”phenotypic-type” concepts reduced the unique term count to 57% of the raw count. The 12
sources of raw data varied widely in coverage (numbers of unique drug/chemical and indication concepts and
relations) generally consistent with the idiosyncrasies of each source, but had strikingly little overlap, suggesting that
we successfully achieved source/raw data diversity.

Conclusions: The DID is a database of structured drug-indication relations intended to facilitate building practical,
comprehensive, integrated drug ontologies. The DID itself is not an ontology, but could be converted to one more
easily than the contributing raw data. Our methodology could be adapted to the creation of other structured
drug-disease databases such as for contraindications, precautions, warnings, and side effects.
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Background
Biomedical information overload and the potential of
formal ontologies to help overcome it are well recog-
nized [1–3]. Information overload is but one threat to
the viability of the traditional pharmaceutical industry.
Others include the rising costs of laboratory research,
clinical trials, litigation over anomalous harmful side
effects, and increasing times to market [4]. The success
of the Gene Ontology (GO) as an in silico molecular
biology research tool [5] suggests that drug ontologies
could have a similar impact on drug research. The
advance of practical ontologies into the pharmaceutical
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domain has been much anticipated [6–8], and is becom-
ing evident [9, 10].
Pioneering reports on ontology-based, in silico drug

discovery have emerged [11–13]. The basic goal is
ontology-assisted inference of surprising and/or more-
likely-to-succeed new drug candidate compounds for
known uses, thus cutting costs and time to market. Drug
ontology-assisted inference could also be applied to find-
ing new uses for known compounds (drug repurposing)
[14], or “personalized” genome-dependent safety/efficacy
profiling (pharmacogenomics) [15–18]. These ontologies
include drug relations to chemically similar compounds,
diseases (therapeutic classifications, indications, side
effects), and biological pathways (mechanisms of action,
molecular target proteins or their genes, secondary disease-
gene and protein-protein interactions). In principle, such
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ontologies could be expanded to encompass many more di-
mensions of drug information [19, 20]; that is, they can be
made more comprehensive.
For further progress in building comprehensive drug

ontologies, rich and well-structured knowledge (content)
about biological pathways and chemically similar
compounds is readily available from resources such as
GO, GenBank [21], DrugBank [22], PubChem [23], and
ChemIDplus [24]. Rich drug-disease knowledge also is
readily available, but usually as unstructured (“free”) text;
e.g., DailyMed [25]. Thus the well-structured but
relatively shallow WHO-ATC drug classification [26]
has been utilized as a source for drug-disease
knowledge [12, 13].
It is important to distinguish between diseases, indica-

tions, contraindications, side effects, and other such
dimensions of drug information. A drug indication can
be a disease1 that the drug is “used for” (i.e., to treat,
prevent, manage, diagnose, etc.). An important subset
are approved indications which have been through a
formal, country-specific regulatory vetting process. But
drugs can also be indicated for medical conditions which
may not be considered diseases, such as pregnancy.
Drugs can also be indicated for procedures, such as
contrast media for radiology. In ontological terms,
medical conditions (of which diseases are a subclass)
and medical procedures constitute the range of drug
indications. They also constitute the range of very differ-
ent, even orthogonal, drug relations such as contraindi-
cations, precautions, and warnings. The range for side
effects, on the other hand, is arguably limited to
diseases. Thus it is important to specify which of
these relations is being addressed. This paper ad-
dresses indications, but much of it is extensible to
other drug-disease relations.
Methods
We created a drug-indication database (DID) using con-
tent from openly available, commercially available, and
Merck proprietary information resources. To integrate
the data, we attempted to identify distinct “triples” of a
drug, indication, and indication subtype (treat, prevent,
manage, diagnose, etc.), and then normalize each
component to a standard terminology or code. The raw
data varied widely in format, from well-structured,
vocabulary-controlled triples to hierarchical classifica-
tions to free text. While the DID itself is not an
ontology, it could be converted to one more easily than
the contributing raw data.
Sources
Raw data on drug/chemical-indication relations were
collected from the following resources.
DailyMed
DailyMed [25] is a free drug information resource pro-
vided by the U.S. National Library of Medicine (NLM)
that consists of digitized versions of drug labels (also
called “package inserts”) as submitted to the U.S. Food
and Drug Administration (FDA). The information format
of the labels is mostly free text but with standard section
headings, including “Indications & Usage.” DailyMed was
of special interest because of its comprehensive coverage,
open availability, and the package inserts’ combination of
format consistency, rich detail, and provenance (manufac-
turer-written, scientifically vetted, and FDA-approved).

DrugBank
DrugBank [22] “is a unique bioinformatics and chemin-
formatics resource that combines detailed drug (i.e.
chemical, pharmacological and pharmaceutical) data
with comprehensive drug target (i.e. sequence, structure,
and pathway) information” provided by the University of
Alberta. Many records include an explicit Indication
field populated with free text values, and leveraging
these was of special interest due to DrugBank’s rich
coverage of molecular target information.

MeSH PA
MeSH (Medical Subject Headings) [27] is NLM’s con-
trolled vocabulary used to index Medline/Pubmed [28]
articles by scientific topics including drugs, chemicals,
diseases, and other biomedical conditions, processes,
and procedures. MeSH has ontology-like hierarchical
and other relationships between concepts, but it does
not consistently link drugs to diseases/conditions/pro-
cesses explicitly (e.g., “Aspirin” to “Fever”). It does,
however, have a special Pharmacological Action (PA)
relationship which links drugs and other chemicals to
therapeutic classes (e.g., “Aspirin” to “Antipyretics”)
which could be mapped to diseases/conditions/processes
(e.g., “Antipyretics” to “Fever”).

NDFRT
NDFRT (National Drug File Reference Terminology) [29]
is produced by the U.S. Veterans Health Administration
and is openly available from several resources including
NLM’s UMLS (Unified Medical Language System) [30].
Like MeSH PA, NDFRT consists of controlled vocabulary
terms connected by specific relationship names, five of
which could be considered pointers to indications or PA’s:
may_treat, may_prevent, may_diagnose, has_mecha-
nism_of_action, has_physiological_effect.

PDR
PDR (Physicians’ Desk Reference) is “a commercially
published compilation of manufacturers’ prescribing in-
formation (package insert) on prescription drugs,



Fig. 1 Example USAN raw data
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updated annually.” [31] Its long history (65 editions) and
ubiquitous hardcopy availability give PDR a certain
provenance. “Section 3 - Product Category Index” classi-
fies drugs (trade names) by disease (e.g., “ALCOHOL
DEPENDENCE”) and/or PA (e.g., “ANALGESICS”).

ChEBI
ChEBI (Chemical Entities of Biological Interest) [32]
consists of a database and ontology supplied by the
European Bioinformatics Institute. The has_role rela-
tionship of the ontology connects drugs and chemicals
to functions, including PAs (e.g., “antibacterial drug”;
“anti-ulcer drug”; “proton pump inhibitor”).

CTD
CTD (Comparative Toxicogenomics Database) [33, 34]
is supplied by North Carolina State University and
Mount Desert Island Biological Laboratory, Salisbury
Cove, Maine. The Chemical-Disease Associations file
consists of pairs of MeSH terms connected by the rela-
tionships therapeutic and/or marker/mechanism and
annotated by evidence type; we used the “direct evi-
dence” subset.

USAN TC
USANs (United States Adopted Names) are the official
U.S. generic names chosen for drugs by the USAN
Council in consultation with the drug’s sponsoring com-
pany [35]. Each name has a variety of structured (but
not necessarily vocabulary controlled) relations signify-
ing proprietary, chemical, and therapeutic information.
This information is published annually in the USP
Dictionary of United States Adopted Names (USAN) and
International Drug Names [36] and monthly by the
American Medical Association (AMA) [37] (Fig. 1), and
Merck encodes it in our internal vocabulary system
(“eVOC”). The Therapeutic Claim (TC) values include
disease names, PAs, and indication subtypes such as
“treatment of” and “prevention of.”

WHO-ATC resources
WHO-ATC (World Health Organization Anatomic-
Therapeutic-Chemical) is a five-level drug classifica-
tion hierarchy specifying (typically, from top to
bottom) the anatomical system acted upon, thera-
peutic action, and chemical nature of the drug. The
hierarchy can convey multiple indications/PAs for a
given drug. WHO-ATC is widely accepted as a stand-
ard for drug classification, including in the Merck
eVOC system. We obtained WHO-ATC data from
two WHO datasets purchased by Merck and
additional mappings in eVOC; these are referred to as
WHO_ATC [38], WHO_DD [39], evoc_ATC, and evoc_-
eProj in the rest of this document. (All evoc_eProj and
some evoc_ATC data represent Merck proprietary infor-
mation and therefore have been removed from the at-
tached DID subset, Additional file 1.)

Parsing and filtering
These resources and their contributions to our database
are summarized in Table 1. “Parsed” refers to converting
the raw data to triples of a drug, indication, and indica-
tion subtype. In the process of parsing, some raw data
was found to be irrelevant, redundant, and/or intract-
able, and therefore was removed from further processing
(“filtered”). Differences in contribution counts from “fil-
tered” to “parsed” correlate inversely with how well-
structured and vocabulary-controlled were the raw
source data, from low (ChEBI, CTD, MeSH PA, NDFRT)
to high (DailyMed, DrugBank).
Filtering is not qualitatively different from initial

subsetting (Table 1, column 3). For example, ChEBI’s,
CTD’s, and MeSH PA’s relatively large initial
contributions can be attributed to their higher cover-
age of non-drug chemicals and non-therapeutic quasi-
indications (e.g., “Carcinogens”; “Mutagens”). These could
be considered irrelevant to pharmacy/prescription appli-
cations of the DID, but were left in for drug discovery
applications. ChEBI’s contribution was reduced 48% by
filtering out irrelevant (non-indication) has_role objects
(e.g., “metabolite”; “prodrug”; “epitope”), but CTD’s
“marker/mechanism” subset (63%) was not removed due to
its potential use in future analysis. DailyMed’s filtering re-
duction was even larger but aimed at very different targets:



Table 1 Source contributions of drug-indication data

source abbrev source name or description subset if any version/date number of drug-indication pairs

initial filtered parsed

ChEBI Chemicals of Biological Interest
Ontology

has_role relations 104/June 1, 2013 16,415 8,598 8,598

CTD Comparative Toxicogenomics
Database

Chemicals-Diseases Associations,
“direct evidence” subset

May 2, 2014 82,000 81,214 81,214

DailyMed NLM’s database of FDA package
inserts

single component title (product
name) & Indications sections with
tractable text length (<540)

March 20, 2011 15,834 1,612 3,840

DrugBank U. Alberta open access DB of drug
target and other info

title (drug name) & Indications
sections

3.0/2011 1,599 1,595 6,004

MeSH PA Medical Subject Headings Pharmacologic
Action relations

2013/Dec. 3, 2012 26,293 25,847 25,908

NDFRT National Drug Formulary Reference
Terminology

may_treat & may_prevent relations 2009AA (UMLS) 50,775 5,294 5,294

PDR Physicians’ Desk Reference Section 3 - Product Category Index 2006 3,150 1,204 2,169

USAN_TC United States Adopted Names
Therapeutic Claims

March 31, 2014
(eVOC)

6,569 5,954 7,234

WHO_ATC World Health Organization Anatomic-
Therapeutic-Chemical, Defined Daily
Dose index

2005 16,276 7,807 9,004

WHO_DD World Health Organization Drug
Dictionary

single generic compounds with ATC
codes (minus 2005 WHO-ATC overlap
and herbals BNA = “9…”)

Sept. 2013 40,736 21,764 25,674

evoc_ATC WHO-ATC codes in Merck’s eVOC
generic names dictionary

single generic compounds with ATC
codes (minus WHO-ATC & WHO-DD
overlap)

May 6, 2014 65,552 16,269 19,093

The numbers refer to candidate drug-indication pairs in the initial raw data extract (initial), after filtering for internal redundancy, relevance, and/or tractability
(filtered), and after parsing of free text into single concepts (parsed) as described in the main text. The “filtered” count is the number of unique pairs of raw drug
name (DID column D) and indication “entire value/string” (column AQ), while the “parsed” count is the number of unique pairs of raw drug name and indication “target/
substring” (column AR). evoc_eProj data are not shown
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combination products (20%), intractably long (>539 charac-
ters) “Indication & Usage” texts (37%), and redundant
“Indication & Usage” values paired with the same drug gen-
eric name differing only by dosage, formulation, trade
name, or supplier (33%). NDFRT’s (90%) and PDR’s (62%)
filtering reductions were also due primarily to conflating
various forms (trade names, in PDR’s case) of the same gen-
eric name.2

Initial counts from the WHO-ATC resources are based
on viewing each level of the WHO-ATC hierarchy as a
separate indication, rather than combining them into a
single raw term. Filtering resulted in reductions of 52%
(WHO_ATC), 47% (WHO_DD), and 75% (evoc_ATC)
reflecting removal of combination and ill-formed drug
names, and non-indication and redundant classification
terms (e.g., “Antithrombotic Agents” at nested hierarchical
levels [B01 and B01A]).
It must be emphasized that the parsing, filtering,

and normalizing (see below) done in this work
employed a wide variety of ad hoc methods and
manual curation commensurate with the raw data/
source diversity.
Normalizing drug names
Various types of drug identifiers are exemplified in Fig. 1,
including a generic name (in this case a USAN, “aftobetin
hydrochloride”), chemical names, a structural formula,
sponsor code designations, and a CAS (Chemical
Abstracts Service) Registry Number. Other types not
shown in Fig. 1 include trade names (e.g., “Tylenol” corre-
sponding to the generic name “acetaminophen”), FDA’s
UNII (Unique Ingredient Identifier; e.g., “A1FCZ940WA”
for “aftobetin hydrochloride”), and InChI (International
Chemical Identifier) Key (e.g., “GMWHTUNMFTUKHH-
NDUABGMUSA-N” for “aftobetin hydrochloride”) [40].
The equivalence of such terms for the exact same chem-
ical entity can sometimes be debated due to details such
as isomerism, salt forms, hydration, formulation, and dos-
age, but they are commonly considered synonyms, with
the generic name as the preferred term (PT).
Thus, to parse out the drug identifier in each raw

drug-indication record, we looked for source database
fields or elements containing these types of terms, and
attempted to normalize them to generic names using the
sources’ own and/or other synonym dictionaries. These
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dictionaries included those available from ChemIDplus,
ChEBI, CTD, DrugBank, UMLS, and Merck’s eVOC. In
addition, to resolve conflicts among these dictionaries,
we attempted to derive a “preferred PT” via CAS
number mapping and ranking the dictionaries in the
order ChemIDplus > ChEBI > DrugBank > eVOC > CTD.
For example, in ChemIDplus the PT for CAS number
103-90-2 is “acetaminophen” but in ChEBI it is “para-
cetamol.” Thus the DID enables ChEBI drug-indication
data for “paracetamol” to be grouped with other sources’
drug-indication data for “acetaminophen.” UMLS is not
a rich source of CAS numbers, but supplies an equally
language-neutral “CUI” (Concept Unique Identifier).

Normalizing indications
In the DID and its non-proprietary subset (Additional
file 1), indications associated with each drug name are
encoded at four basic levels of granularity.

� Raw entire value/string (column AQ): the raw
source’s term/text, including entire DailyMed
“Indications & Usage” sections converted to single-
line sentences.

� Raw target/substring (column AR): a term/phrase
within or based on the entire value/string, denoting
a distinct indication concept. If the target/substring
is the same as the entire value/string, it is flagged
with “Y” in column AS.

� UMLS entry term (column AU) that best matches
the target/substring and conforms to our semantic
type preference for phenotypes (diseases and other
biological conditions, processes, and functions; see
below). UMLS mapping was done using ad hoc perl
scripts designed to work with UMLS flat files
(2013AA version), MetaMap [41], and/or NLM’s
online UMLS browser [42]. Each UMLS entry
term is tagged for whether it is preferred (“P”)
or a non-preferred synonym (“S”) (column AX).
For readability in the DID, all “P” terms were
converted to proper case and all “S” terms were
converted to lower case using Excel string
functions.

� UMLS preferred term (column AV) and
corresponding CUI (column AW) were computed
from UMLS 2013AA flat files to unify all encoding
at this level, even if raw values consisted of UMLS
terms or CUIs (MeSH PA and NDFRT), except for
mappings only available in more recent UMLS
versions via NLM’s online browser.

Indication semantic types
For UMLS encoding of indication concepts, we had a
preference for UMLS concept terms classified under
UMLS semantic types signifying phenotypes (diseases
and other biological conditions, processes, and func-
tions). The goal of this was to reduce encoding scatter.
For example, the raw term “antibacterial agent” exactly
matches a UMLS synonym under “Anti-Bacterial
Agents” (CUI C0279516) classified under semantic type
“Antibiotic” (A1.4.1.1.1.1). But calling a drug an “anti-
bacterial agent” is equivalent to saying that its indication
is “Bacterial Infections” (C0004623, classified under
“Disease or Syndrome” B2.2.1.2.1). By mapping “Anti-
Bacterial Agents”/C0279516 to “Bacterial Infections”/
C0004623, raw data that encode to either are unified.
This is tantamount to trading lexical match precision for
increased terminological reduction (explained below).
In the DID and Additional file 1, initial indication

mappings to non-phenotypic semantic type UMLS terms
are encoded in columns BD-BL with their remapping to
phenotypic type CUIs in AT-BC. If the initial non-
phenotypic type mapping could not be mapped to a pheno-
typic type CUI, it is encoded in AT-BC. For example,
“Cephalosporins” (a WHO-ATC category, among other in-
stances) maps to C2266959/Antibiotic/A1.4.1.1.1.1, but is
“stuck” there because UMLS had no phenotypic type term
such as “cephalosporin activity”; “cephalosporin effect”; or
“cephalosporin-sensitive infection.”

Indication subtypes
In prior work [19, 20] we observed that drug indications
are often classified or annotated by subtypes such as
approved vs. non-approved, or treatment vs. prevention.
The current work’s expanded raw data scope brought to
light additional types with lexical cues such as thera-
peutic/pharmacologic class prefixes (“Antidiabetic”),
suffixes (“Anxiolytic”), and head nouns (“beta-adrenergic
agonist”; “Lipoprotein Lipase Activators”; “smoking ces-
sation adjunct”). Some of these distinctions are likely to
be even more substantial than treatment vs. prevention;
e.g., “Antineoplastics” and “Carcinogens” both map to
“cancer” but in opposite ways, one inhibitory or negative,
the other causative or positive. This suggests an indication
subtype hierarchy representing a gradient of granularity
with raw terms like “treatment” and “prevention” at the
bottom/leaf level and “negative” and “positive” at the top.
In between would be lexical root forms such as “treat”
representing “treats”; “treating”; “treatment”; etc. If so
encoded in the DID, users could select the most
appropriate indication subtypes and level of granularity
for their use case. We identified indication subtypes based
on Excel string searches (“treat”; “anti”; “inhibit”; etc.) in
the raw entire value/string (column AQ).

Terminological reduction
The inherent value of terminological normalization is
the core principle of controlled vocabularies that have
been used to organize, search, and represent information
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for over a century [43]. To measure the success of our
terminological normalization efforts, we defined
terminological reduction (TR) as TR = (N + X)/U, where
N = number of unique normalized names, X = number of
unique raw names which remain unnormalized, and
U = number of unique original raw names.

Results
Database overview
The Merck in-house version of the DID (January 2015
release) contains 198,415 rows of data representing
unique quadruplets of source, raw drug/chemical name,
raw indication “target” term, and indication UMLS CUI.
Across sources, there are 29,964 unique raw drug/chem-
ical names, 10,938 raw indication target terms, and
192,008 unique raw drug/indication pairs. Additional file
1 is a copy of this spreadsheet minus 5,557 rows (3%)
containing Merck proprietary information. Therefore re-
producing these counts and the following analyses on
Additional file 1 would yield slightly different quantita-
tive results, but not substantially alter our qualitative
conclusions. Additional file 1’s “schema” worksheet
shows the DID schema and two example records.

Drug name normalization
Drug name mapping to CAS numbers is encoded in
DID columns E-H. CAS numbers were assigned to 87%
of the DID rows and 71% of the unique raw drug names,
providing TR of the unique names to 91%. The preferred
authority ChemIDplus alone covered 84% of the rows
and 68% of the unique raw drug names. Almost all
(98%) of these CAS number mappings are based on
exact (case-insensitive) matches to the ChemIDplus’ or
other standard’s PT for that CAS number, or to a
source-specified synonym (“<syn per source>”). The
synonym matches were manually curated and obvious
broader term (BT) and narrower term (NT) matches
were reclassified as such. For BT and NT matches the
directionality is raw-to-standard; e.g., raw “arformoterol
fumarate” is a NT (a salt, derivative, analog, or formula-
tion of) the closest ChemIDplus term which has a CAS
number, “Arformoterol”. Also distinguished are quasi-
synonym matches such as “cidofovir anhydrous”: “Cido-
fovir”. The intent is to offer users multiple match quality
levels as options for filtering. The individual drug name
mappings to ChEBI, ChemIDplus, and CTD are encoded
in DID columns I-AC.
Drug name mapping to UMLS is encoded in DID

columns AD-AM. UMLS CUI mapping, compared to
CAS number mapping, produced superior coverage of
DID rows (96% vs. 87%) and unique raw DB drug names
(89% vs. 71%), and superior TR (85% vs 91%). The differ-
ence is at least partly due to the higher numbers of
synonym and narrower UMLS matches, which may be
an artefact of unequal curation effort or UMLS’ coverage
of broad classes (e.g.,“antiseptics”) which by nature do
not have CAS numbers.

Indication normalization
Ninety-nine percent of DID rows represent unique
triplets of raw data source (column B), drug name
(column D), and indication target/substring (column
AR), the other 1% representing compound matches
where more than one UMLS term was needed to cover
the indication concept completely. There are 10,938
unique values of the target/substring, of which 28 (0.3%)
could not be mapped to UMLS. The rest mapped to
7,522 UMLS entry terms and thence to 6,227 UMLS
PT/CUIs of the preferred semantic type (columns
AT-BC), yielding a TR of 57%.

Indication semantic type normalization
Unlike the drug name normalization mappings, the
indication UMLS mappings have a sizable prevalence
of quasi-synonym match types (column AT; 46% of
rows, 30% of unique target/substrings). This is attrib-
utable to our preference for indication normalization
to phenotypic-type UMLS terms, operationalized in the
semantic type normalization step. Non-phenotypic-type
terms were thus reduced from 29% of DID rows among
initial UMLS mappings (columns BD-BL) to 3% among
final (AT-BC), primarily terms of type “Pharmacologic
Substance”/A1.4.1.1.1 (25% initial, 1% final). The preva-
lence rank of “Pharmacologic Substance”/A1.4.1.1.1 chan-
ged from first to 13th, reflecting the large contributions
from ChEBI, CTD, MeSH, PDR, USAN, and WHO-ATC
consisting or raw therapeutic/pharmacologic class terms
(e.g., “Analgesics”; “Antineoplastics”; “Carcinogens”).

Indication subtypes
Indication subtype data are contained in DID columns
AN-AP. These data are very preliminary and incomplete.
Supplementing and refining it is one of our ongoing
extensions of this work.

Comparison of sources
Coverage
Table 2 summarizes how much of the data was covered
by each of the 12 sources after normalization. CTD cov-
ered by far the largest number of unique drug-indication
relations (49%), followed by MeSH_PA, WHO_DD, and
eVOC_ATC (10–14%), followed by the others (1–5%).
With the exception of USAN_TC, this rank-order
pattern also held for drug/chemical names alone. For
indications alone, CTD also covered 49%, followed by
DrugBank (34%), DailyMed (23%), USAN_TC (18%),
NDFRT (16%), and the others (5–8%).



Table 2 Comparison of sources’ coverage of unique drug
names, indication terms, and drug-indication relations after
normalization

Source %normalized

drug indication drug-indication pairs

CTD 33 49 49

MeSH_PA 27 6 14

WHO_DD 28 5 14

evoc_ATC 26 5 11

ChEBI 17 8 5

WHO_ATC 11 5 5

DrugBank 6 34 4

USAN_TC 23 18 4

NDFRT 6 16 3

DailyMed 4 23 2

evoc_eProj 3 6 1

PDR 3 5 1

Percentages are relative to total counts of 25,278 unique normalized drug names,
6,228 unique normalized indication terms, and 167,087 unique normalized
drug-indication relations
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Overlap
Table 3 summarizes overlap, a measure of the unique-
ness of each source’s contribution to the DID, defined
as the number of sources that contributed each
unique drug and indication (target) term and drug-
indication pair, before (raw) and after normalization,
Table 3 Comparison of sources’ overlapping coverage of unique dr
and after normalization

source raw normaliz

drug indic (target) drug-indic pairs drug

All 1.64 1.30 1.02 1.87

evoc_ATC 1.62 3.40 1.03 2.09

WHO_ATC 3.81 3.37 1.07 4.66

WHO_DD 1.91 3.29 1.03 2.59

MeSH_PA 2.81 1.33 1.03 3.08

PDR 5.56 1.60 1.17 6.14

evoc_eProj 1.00 1.80 1.00 2.21

ChEBI 2.51 1.14 1.01 3.11

USAN_TC 3.03 1.47 1.02 3.34

DailyMed 4.68 1.60 1.15 5.18

NDFRT 5.46 2.45 1.41 6.24

DrugBank 5.63 1.49 1.20 6.24

CTD 2.41 1.53 1.03 2.62

Numbers represent the average number of sources sharing each term or term pair,
drug name score of 1.00 for evoc_eProj means that system only shares its raw drug
terms in its internal data systems. When these are normalized, as much as possible,
names representing evoc_eProj content are shared with enough other DID normali
even though some company codes do not yet have public domain generic names. Data
indic”) for the individual sources
and the difference. Consistent with overall TR, the
biggest effect of normalization was seen in the
increase in shared indication terms with the descend-
ing rank-order following the tendency of each source
to express indications in other-than-phenotypic-type
terms (Table 3, column 9).
The pooled (all sources) shared term data can also be

viewed as a Zipf distribution [44] (Fig. 2) showing, again,
the larger effect of normalization on indication than drug
terms or drug-indication pairs. Strikingly, no raw drug
names were shared by more than 10 of our 12 resources,
and only four normalized drug names were shared by all
12 (“Dexamethasone”; “Hydrocortisone”; “Methyldopa”;
“Nitroglycerin”). The most-shared (by 11 sources) norma-
lized drug-indication pairs were “Aspirin:Pain” and
“Methyldopa:Hypertensive Disease” (the UMLS PT for
“hypertension”).

Richness
Each source’s average numbers of indications per drug
name and drug names per indication, before and after
normalization, measure what might be called the “rich-
ness” of their drug-indication information. CTD had by
far the highest (10) average raw indication targets per
drug/chemical name, consistent with its low overlap and
high coverage. Following CTD was a cluster in the range
of 3.5–4 indication targets/drug that included DailyMed,
MeSH_PA, DrugBank, and NDFRT, then a cluster in the
2.7–3.3 range that included WHO_DD, WHO_ATC,
ug names, indication terms, and drug-indication relations before

ed change

indic drug-indic pairs drug indic drug-indic pairs

1.80 1.14 0.23 0.50 0.12

6.77 1.38 0.47 3.37 0.35

6.67 1.96 0.85 3.30 0.89

6.54 1.40 0.68 3.25 0.37

4.54 1.43 0.27 3.21 0.40

4.68 2.32 0.58 3.08 1.15

4.17 1.44 1.21 2.37 0.44

3.40 1.72 0.60 2.26 0.71

3.30 1.81 0.31 1.83 0.79

2.79 1.48 0.50 1.19 0.33

3.61 1.76 0.78 1.16 0.35

2.62 1.70 0.61 1.13 0.50

2.06 1.08 0.21 0.53 0.05

computed within each source’s coverage. For example, the low outlier raw
names with itself, reflecting the use of Merck company codes as preferred
to public domain generic names, the score rises to 2.21; that is, these generic
zed content to push the non-self average from zero up to 1.21 (=2.21–1.00)
are sorted in descending order of the change indication scores (column 9; ”change/



Fig. 2 Zipf distributions of sources’ overlapping coverage of unique
drug names, indication terms, and drug-indication relations before
and after normalization
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evoc_eProj, PDR, and evoc_ATC, and finally ChEBI (1.8)
and USAN_TC (1.2). These numbers were little changed
by normalization. The biggest changes were actually
negative (0.4 more raw than normalized indications/drug
for MeSH_PA and evoc_eProj).
The highest average numbers of drug names per

raw indication target were provided by WHO_DD (69),
evoc_ATC (56), and MeSH_PA (55). This same cluster
also showed the biggest effect of normalization. At the
low end, DailyMed and DrugBank data showed the most
dramatic effect of processing, their average indications/
drug increasing from approximately 1 (raw entire values)
to 2 (raw targets) to 3 (normalized indications).

Discussion
Our DID is intended to facilitate building practical,
comprehensive, integrated drug ontologies. As for com-
prehensiveness, we achieved high source/data diversity
as evidenced by a low overall degree of coverage overlap
consistent with the idiosyncrasies of each source (non-
drug chemicals, free text, hierarchical terms, etc.).
Diversity is not equivalent to comprehensiveness, but is
indicative of it. As for integration, indication normalization
to phenotypic-type UMLS concepts provided substantial
TR (57%). However, drug/chemical name normalization
(TR 84%) was poor by comparison; therefore there was
almost no effect of overall normalization on the average
number of indications per drug.
WHO_DD’s, WHO_ATC’s, evoc_eProj’s, PDR’s, and

evoc_ATC’s “richness” may be somewhat artificial in that
it may be mainly due to WHO-ATC’s and PDR’s very
general higher hierarchical categories. However, this fea-
ture may facilitate clustering of drug-indication relations
and so explain WHO-ATC’s wide acceptance as a stand-
ard for drug classification and discovery research.
Because its true richness was not captured, DailyMed

raises major issues for further development of the DID.
These include the cost of dealing with the current (differ-
ent) downloading, subsetting, and sectional parsing
options, and developing better, less manual, free text-to-
UMLS mapping methods. On the benefit side, methods
applicable to DailyMed’s “Indications & Usage” sections
are expected to be adaptable/re-usable for contraindica-
tions, side effects, and other dimensions of drug informa-
tion. Relevance to clinical use cases is recognized [45] but
DailyMed’s fit to early-stage drug discovery has been ques-
tioned [46]. NDFRT presents the opposite conundrum. In
a spot check of two drugs, we [20] found major discrepan-
cies between NDFRT’s may_prevent and may_treat rela-
tions and the approved clinical indications. Therefore
these relations may be a poor fit to clinical drug ontology
use cases. However, as a representation of possible drug
indications conveyed by co-occurrence of MeSH terms in
Medline, they may be ideal for early-stage drug discovery.
Also, NDFRT’s may_diagnose, has_mechanism_of_action,
and has_physiological_effect relations will be examined for
future inclusion in the DID.
Finally, CTD’s high-coverage, low-overlap outlier sta-

tus raises suspicion that its “marker/mechanism” subset
(63%) may not be relevant to drug indications and there-
fore should be examined and possibly excluded from
future DID releases.

Conclusions
The DID is a database of structured drug-indication re-
lations created using openly available, commercially
available, and Merck proprietary information resources
and terminological normalization tools. It is intended to
facilitate building practical, comprehensive, integrated
drug ontologies. The DID has good source/raw data
diversity as measured by low coverage overlap, and
significant integration/normalization as measured by
terminological reduction. Numerous opportunities exist
for data cleaning, addition, and other improvements.
Our methodology could be adapted to the creation of
other structured drug-disease databases such as for
contraindications, precautions, warnings, and side effects.

Endnotes
1Following UMLS, we take “diseases” to be synonym-

ous with “disorders.” We also mean “diseases” to convey
the larger sense of pathological or aversive states that
might otherwise be distinguished as signs, symptoms,
abnormalities, deficiencies, injuries, etc.

2Although different forms of the same generic name can
in principle be specific to different indications, our confla-
tion of NDFRT is not “lossy” because NDFRT appears to
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cross-generalize them regardless. For example, finasteride
is marketed as a 1 mg tablet indicated to treat male-
pattern baldness and a 5 mg tablet indicated to treat
benign prostatic hyperplasia. But NDFRT has may_treat
relations to both “Alopecia” and “Prostatic Hyperplasia”
(the corresponding MeSH PTs) for all three: “Finasteride
1 mg Tab”; “Finasteride 5 mg Tab”; and “Finasteride.” In
another example, “Bismuth” and all of its salt variants have
relations to “Escherichia Coli Infections”; “Virus Diseases”;
“Helicobacter Infections”; and “Dysentery, Bacillary” pre-
sumably related to bismuth subsalicylate’s gastrointestinal
effects but definitely inappropriate for “Bismuth Hydro-
xide” which is a hazardous industrial chemical. In another
example, radioactive and hazardous “Iodine, I-125”
inappropriately shares the “Iodine” relations to “Burns”;
“Leg Ulcer”; “Radiation Injuries”; “Staphylococcal Infec-
tions”; and “Surgical Wound Infection.”

Additional file

Additional file 1: Drug-Indication Database non-proprietary subset.
(XLSX 61806 kb)
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